第32回山梨県ワイン鑑評会出品酒の調査報告

A Report on the Wines Presented through the 32th YAMANASHI Prefectural Exhibition

Shuichi INO, Yoshihito HIKAWA, Tadahiro NAKAYAMA and Satoshi OGINO

要約
1. 出品総数は46頭、出品酒は93点であった。A（優）及びB（良）ランクはそれぞれ4点及び76点で、これらは全体の4%、82%に当たる。概ね良好であった。
2. 赤ワインと同様に、白ワインではエキス4 g/L未満の辛口酒が多く、甲州種ワインでは7割、その他の品種ではすべて辛口であった。
3. 白ワインではシュメール13点、博覧会6点、博覧会3点等、辛口白ワインの香気を重視し、高品質化が進化。差別化するための醸造技術を取り入れた出品酒が今回も多く見られた。
4. 赤ワインでは36点中24点が県産ブドウ使用大量ワインであり、良質の県産赤ワイン醸成を目指す県内メーカーの意匠が感じられた。
5. 香気成績では、白ワイン辛口でイソアミルアルコール量が250mg/L以上で比較的多いものは34%程度（56点中19点）であり、酒質向上を目指した低温発酵や清澄果汁の使用などの醸造管理の徹底が図られた。

1. 緒言
2002年6月11日（火）、ワインセンターにおいて山梨県工業技術センターと山梨県ワイン鑑評会の共催により、「第32回山梨県ワイン鑑評会」が開催された。2001年度の県外産出数が23,932 L（前年比86.2%）であったが、1999年度の赤ワインは大幅に落ち込み、さしたるものには、その全県消費量は1993年から急減し、この8年間に2.35倍となっている。また、2001年の気象条件は、気温は3月から7月までが高めであり、7月の日照時間は265時間で平年より93時間も多かった。しかしながら、8月以降、気温は低めに推移し、ほぼ平年並みの収穫時期となった。出品酒の審査結果及び成分含有量について報告する。

2. 実験方法
2-1 出品酒
出品酒のタイプ別出品数とその略号を表1、また原料ブドウの品種と略号を表2に示した。白ワインは58点の出品があり、その内訳は甲州種が40点、その他が18点であり、ほぼ等割りであった。甲州種は新酒が18点、古酒が22点、その他の新酒が4点、古酒が12点であった。一方、赤ワインは36点の出品があり、新酒が17点、古酒が19点であった。またロゼワイン1点も出品された。

表1 出品酒の内訳

<table>
<thead>
<tr>
<th>区分</th>
<th>出品酒</th>
<th>略号</th>
</tr>
</thead>
<tbody>
<tr>
<td>白ワイン</td>
<td>新酒</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>古酒</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>新酒</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>古酒</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>新酒</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>古酒</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td></td>
<td>93</td>
</tr>
</tbody>
</table>

表2 原料ブドウの略号

<table>
<thead>
<tr>
<th>白ワイン</th>
<th>赤ワイン</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>甲州</td>
</tr>
<tr>
<td>Ch</td>
<td>シャルドネ</td>
</tr>
<tr>
<td>S</td>
<td>セミヨン</td>
</tr>
<tr>
<td>Ka</td>
<td>赤モルシェ</td>
</tr>
<tr>
<td>SB</td>
<td>ソーヴィニヨン・ブラン</td>
</tr>
<tr>
<td>SS</td>
<td>サンセミヨン</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>甲州</td>
</tr>
<tr>
<td>C</td>
<td>カベルネ・ソーヴィニヨン</td>
</tr>
<tr>
<td>Me</td>
<td>メルロー</td>
</tr>
<tr>
<td>MA</td>
<td>マスカット・バリーA</td>
</tr>
<tr>
<td>BQ</td>
<td>ブラックブレンド</td>
</tr>
<tr>
<td>ka</td>
<td>パラノール</td>
</tr>
<tr>
<td>CF</td>
<td>カベルネ・ブラン</td>
</tr>
<tr>
<td>Ky</td>
<td>巨峰</td>
</tr>
<tr>
<td>Bi</td>
<td>ピノベルダ</td>
</tr>
</tbody>
</table>

— 130 —
2-2 実験方法

分析は山梨大学、東京国税局検定室、独立行政法人
酒類総合研究所、ワインメーカー及び工業技術センターの
専門家19名がA①, B②, C③, D④, E⑤の5名類
で採点を行い、その平均値により4段階（A≦2.0, 2.0＜B≦3.0, 3.0＜C≦4.0, 4.0＜D）にランク分けた。

2-3 分析方法

2-3-1 ウイング (S.G.), アルコール (Alc.), エキス
（Ex.），pH，酸価 (T.A.), 酵素酸値 (F-SO2), 酵素酸値
(T-SO2) 及び遮光度 (OD) は既報りによった。ただし、
赤ワインの酸光度は5倍稀製してから測定した。

2-3-2 リンゴ酸 (M.A.), 乳酸 (L.A.) 及び酢酸
(A.A.) はShodex OAシステムの高速液体クロマートグラフィ
法により分析した。

2-3-3 全フェノール (T.P.) はSingletonらの方法
に準じて行った。

2-3-4 アセトアルデヒド (ACh), ノルマルプロ
パノール (α-ProOH), イソプロタノール (i-BuOH), イソア
ミルアルコール (i-AmOH), 酢酸エチル (EtOAc) 及び酢
酸イソアミル (AmOAc) の分析は既報りによった。

3. 結 果

3-1 出品品、審査及び分析結果

出品品及びその内訳を表1に示した。出場品数は46項
（昨年40項）、出品数は93点（昨年91点）でいずれも昨年より
増加を示した。タイプ別審査及び成分分析結果の平均
値を表3に、各出品品については表5に示した。原料ブド
ウの数値はブレンド割合を表した。

93点の出品品の内、A及びBランクはそれぞれ4点、76
点で、全体の4%、82%に相当し、大部分が良好であった。

C (可) ランクは白ワイン及び赤ワインでそれぞれ7点と
5点で少なかった。いずれもやや酸化気味で味の劣化が欠
点として指摘された。また、Aランクの内訳は甲州種白酒
で3点（Aランク為、1点は長期貯蔵酒）、赤古
酒1点であり、特に注目された。なお、白ワインではエキ
ス4 g/L、赤ワインの赤ワインでは4点、甲州種白酒では7点
で、他の種類ではすべて緑原であった。一方、
白ワインでスルー3点、発酵酒1点、熟成酒3点等、
緑原と同様の香味を兼ね備え、高付加価値化、差別化する
ための醸造技術を取り入れた出品品が今後も多く見られ
た。

一方、赤ワインでは36点中24点が県産ブドウ使用単一ワ
インであり、高い品質の県内ボディワインを目指す県内メ
ーカーの意を歓迎される、その中でマスカット・ベ
リー、及び乾燥ブドウの出品が多く、ヨーロッパ
単品高糖のカベルネソーヴィニョン、メルロー、カベルネフランーや見受けられた。

白ワイン緑原 (エキス4g/L) について甲州種新酒18点、
同種酒23点、その他の種類新酒4点及び同種酒12点、合計
36点における高等アルコール、エステル及びアセトアルデヒドの含有を表4に、また個々のワインの含有量を
表5に示した。AcHは醸造、発酵などの微生物汚染や酸
化等により多く生成され、香味に悪影響を及ぼすことは
よく知られており、このことは我々の既に報告したが、今回も100 mg/L以上のものが17点あったが、特に、香りのく
れが指摘されたのは3点ほどであり、それとも適度170 mg/L程度
で特にその含有量は多かった。なお、AcHは醸造基
と結合するので、適度に酸化が減少しやすく、貯蔵管理
が重要である。i-AmOH量は急激に増大し、特に急増し、試験の場合、幹味や苦味を呈し、白ワインでは好

<table>
<thead>
<tr>
<th></th>
<th>出品品</th>
<th>平均</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>評点</td>
<td>A</td>
</tr>
<tr>
<td>KN</td>
<td>18</td>
<td>2.7</td>
</tr>
<tr>
<td>KO</td>
<td>22</td>
<td>2.5</td>
</tr>
<tr>
<td>SN</td>
<td>4</td>
<td>2.5</td>
</tr>
<tr>
<td>SO</td>
<td>12</td>
<td>2.6</td>
</tr>
<tr>
<td>KN</td>
<td>17</td>
<td>2.7</td>
</tr>
<tr>
<td>RO</td>
<td>19</td>
<td>2.5</td>
</tr>
<tr>
<td>P</td>
<td>1</td>
<td>2.9</td>
</tr>
<tr>
<td>合計</td>
<td>93</td>
<td>4</td>
</tr>
</tbody>
</table>

S.G.（比重）、Alc.（アルコール）、Ex.（エキス）、T.A.（酸価、豚油酸として）、F-SO2（発酵酸値）、T-SO2（酯類酸値）、OD（遮光度）、T.P.（全フェノール）、
M.A.（リンゴ酸）、L.A.（乳酸）、A.A.（酢酸）
<table>
<thead>
<tr>
<th>区分</th>
<th>試料数</th>
<th>乳酸</th>
<th>乳酸</th>
<th>乳酸</th>
<th>乳酸</th>
<th>乳酸</th>
<th>乳酸</th>
</tr>
</thead>
<tbody>
<tr>
<td>KN2</td>
<td>18</td>
<td>249</td>
<td>34</td>
<td>17</td>
<td>77</td>
<td>1.4</td>
<td>55</td>
</tr>
<tr>
<td>KOD</td>
<td>22</td>
<td>210</td>
<td>30</td>
<td>22</td>
<td>105</td>
<td>0</td>
<td>77</td>
</tr>
<tr>
<td>KND</td>
<td>4</td>
<td>233</td>
<td>47</td>
<td>11</td>
<td>76</td>
<td>1.1</td>
<td>76</td>
</tr>
<tr>
<td>SOD</td>
<td>12</td>
<td>244</td>
<td>51</td>
<td>41</td>
<td>94</td>
<td>0</td>
<td>102</td>
</tr>
</tbody>
</table>

1）区分：KN2（甲州新酒脳口）、KOD（甲州古酒脳口）、SN2（その他新酒脳口）、KOD（その他古酒脳口）
2）i-AmOH（イソアミルアルコール）、i-ButOH（イソブタノール）、n-PrOH（ノルマルプロパノール）、EtOAc（餾酸エチル）、AmOAc（餾酸イソアミル）、AcH（アセトンデヒドロ）

ましくないことは既に報告したが、今回、250mg/L以上のものが19点あったが、Cランクは3点だけで、特には酒質での悪影響は指摘されなかった。n-PrOHが30mg/L以上で多いものは13点あった。この成分が多いと味に厚みを与え、これは既に報告したが、エステル成分のAmOAcはフレッシュに寄与するが、新酒に比べて古酒では顕著に少なくなっている。

文 献
1）小澤俊治、飯野修一、細川为宏、溝辺正明、荻野敏、乙原武男、会田隆宏、加々美久：山梨農工大学、1 1153（1979）
2）赤松、重川守、中山高志、飯野敏、小宮山英弘：山梨工科大学研究報告、9、52（1995）
4）飯野修一、中山忠博、山本一男、小宮山英弘：山梨工科大学研究報告、14、138（2000）
5）山梨県工業技術センター編：雫酒醸造法（2000年筆）
6）飯野修一、溝辺正明：農業，89（12），956（1994）
7）飯野修一・中山忠博・荻野敏：山梨工科大学研究報告、15、126（2001）
8）飯野修一・中山忠博・小宮山英弘：山梨工科大学研究報告、14、144（2000）
9）藤原隆・溝辺正道：農化，52（8），300（1992）
<table>
<thead>
<tr>
<th>シリーズ</th>
<th>アルコール濃度</th>
<th>甲類</th>
<th>有機成分</th>
<th>製造技法</th>
<th>コメント</th>
<th>S.O.</th>
<th>A.O.</th>
<th>香</th>
<th>ノルメルト</th>
<th>T.A.</th>
<th>pH</th>
<th>F.P.102</th>
<th>T.P.50</th>
<th>464</th>
<th>5Rmm</th>
<th>T.P.1</th>
<th>M.A.</th>
<th>アルコール</th>
<th>バラメトリック</th>
<th>ノルメルト</th>
<th>ノルメルト</th>
<th>ボリュメトリック</th>
<th>ボリュメトリック</th>
<th>シリーズ</th>
</tr>
</thead>
<tbody>
<tr>
<td>K3.1</td>
<td>K</td>
<td>0.1</td>
<td>未熟化</td>
<td>未熟化</td>
<td>未熟化</td>
<td>0.48</td>
<td>14.4</td>
<td>2.16</td>
<td>0.7</td>
<td>8.96</td>
<td>2.5</td>
<td>2.06</td>
<td>0.00</td>
<td>57</td>
<td>0.083</td>
<td>507</td>
<td>24</td>
<td>34</td>
<td>27</td>
<td>23</td>
<td>82</td>
<td>10.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K3.2</td>
<td>K</td>
<td>0.1</td>
<td>未熟化</td>
<td>未熟化</td>
<td>未熟化</td>
<td>0.91</td>
<td>13.9</td>
<td>2.19</td>
<td>0.6</td>
<td>8.97</td>
<td>2.5</td>
<td>2.06</td>
<td>0.00</td>
<td>58</td>
<td>0.081</td>
<td>547</td>
<td>24</td>
<td>34</td>
<td>27</td>
<td>23</td>
<td>82</td>
<td>10.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K3.3</td>
<td>K</td>
<td>0.1</td>
<td>未熟化</td>
<td>未熟化</td>
<td>未熟化</td>
<td>0.39</td>
<td>13.2</td>
<td>2.16</td>
<td>0.6</td>
<td>9.97</td>
<td>2.6</td>
<td>2.05</td>
<td>0.00</td>
<td>557</td>
<td>0.081</td>
<td>596</td>
<td>24</td>
<td>34</td>
<td>27</td>
<td>23</td>
<td>82</td>
<td>10.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K3.4</td>
<td>K</td>
<td>0.1</td>
<td>未熟化</td>
<td>未熟化</td>
<td>未熟化</td>
<td>0.87</td>
<td>13.1</td>
<td>2.18</td>
<td>0.7</td>
<td>9.97</td>
<td>2.5</td>
<td>2.05</td>
<td>0.00</td>
<td>568</td>
<td>0.081</td>
<td>595</td>
<td>24</td>
<td>34</td>
<td>27</td>
<td>23</td>
<td>82</td>
<td>10.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K3.5</td>
<td>K</td>
<td>0.1</td>
<td>未熟化</td>
<td>未熟化</td>
<td>未熟化</td>
<td>0.90</td>
<td>13.8</td>
<td>2.17</td>
<td>0.7</td>
<td>9.97</td>
<td>2.5</td>
<td>2.05</td>
<td>0.00</td>
<td>578</td>
<td>0.081</td>
<td>595</td>
<td>24</td>
<td>34</td>
<td>27</td>
<td>23</td>
<td>82</td>
<td>10.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K3.6</td>
<td>K</td>
<td>0.1</td>
<td>未熟化</td>
<td>未熟化</td>
<td>未熟化</td>
<td>0.85</td>
<td>13.5</td>
<td>2.16</td>
<td>0.7</td>
<td>9.97</td>
<td>2.5</td>
<td>2.05</td>
<td>0.00</td>
<td>588</td>
<td>0.081</td>
<td>595</td>
<td>24</td>
<td>34</td>
<td>27</td>
<td>23</td>
<td>82</td>
<td>10.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K3.7</td>
<td>K</td>
<td>0.1</td>
<td>未熟化</td>
<td>未熟化</td>
<td>未熟化</td>
<td>0.93</td>
<td>13.2</td>
<td>2.16</td>
<td>0.7</td>
<td>9.97</td>
<td>2.5</td>
<td>2.05</td>
<td>0.00</td>
<td>598</td>
<td>0.081</td>
<td>595</td>
<td>24</td>
<td>34</td>
<td>27</td>
<td>23</td>
<td>82</td>
<td>10.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K3.8</td>
<td>K</td>
<td>0.1</td>
<td>未熟化</td>
<td>未熟化</td>
<td>未熟化</td>
<td>0.96</td>
<td>13.2</td>
<td>2.16</td>
<td>0.7</td>
<td>9.97</td>
<td>2.5</td>
<td>2.05</td>
<td>0.00</td>
<td>598</td>
<td>0.081</td>
<td>595</td>
<td>24</td>
<td>34</td>
<td>27</td>
<td>23</td>
<td>82</td>
<td>10.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K3.9</td>
<td>K</td>
<td>0.1</td>
<td>未熟化</td>
<td>未熟化</td>
<td>未熟化</td>
<td>0.90</td>
<td>13.8</td>
<td>2.16</td>
<td>0.7</td>
<td>9.97</td>
<td>2.5</td>
<td>2.05</td>
<td>0.00</td>
<td>588</td>
<td>0.081</td>
<td>595</td>
<td>24</td>
<td>34</td>
<td>27</td>
<td>23</td>
<td>82</td>
<td>10.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K3.10</td>
<td>K</td>
<td>0.1</td>
<td>未熟化</td>
<td>未熟化</td>
<td>未熟化</td>
<td>0.96</td>
<td>13.2</td>
<td>2.16</td>
<td>0.7</td>
<td>9.97</td>
<td>2.5</td>
<td>2.05</td>
<td>0.00</td>
<td>588</td>
<td>0.081</td>
<td>595</td>
<td>24</td>
<td>34</td>
<td>27</td>
<td>23</td>
<td>82</td>
<td>10.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表5 出品酒の審査及び分析結果
| 項目 | 使用条件 | 材料 | 部品品種 | 品質 | 品質 | 濃度 | 品质|