オリジナルワインの試験醸造
—新醸造用ブドウ「甲斐ブラン」及び「甲斐ノワール」によるワイン醸造—
飯野修一・中山信博・小宮山美弘

Experimental Wine Making of Original Wines
—Wine Making using New Wine Grape Cultivars, ‘Kai blanc’ and ‘Kai noir’—
Shuuichi IINO, Tadahiro NAKAYAMA and Yoshihiro KOMIYAMA

要 括
中間工業規模の試験醸造を行い、新醸造用ブドウの甲斐ブラン及び甲斐ノワールが、それぞれ白ワイン辛口用、赤ワイン用原料ブドウとして良好であることを確認した。
甲斐ブランの白ワインは芳香があり、酸味、苦味の少ない良好な辛口となった。成分ではイソアミルアルコールの生成が少く、酢酸イソアミルの生成が多かった。また、甲斐ノワールの赤ワインは色が強く、味に厚みがあった。成分ではボリフェノール及びイソアミルアルコールが多かった。

1. 緒 言
著者らは、これまで新しい醸造用ブドウ2品種、即ち、白ワイン用の「甲斐ブラン」及び赤ワイン用の「甲斐ノワール」について、成熟特性、醸造適期を調べ、試験醸造も行ったが、甲斐ブランは糖度は比較的上昇するものの、総酸が減少しやすかった。生成ワインは香りが良好で、比較的ポディーがあり、良好であった。一方、甲斐ノワールは糖度が上昇し、総酸が減少しにくいので、収穫時期を遅く、成熟度を増すことが可能であった。生成ワインは赤色が強く、渋みや味の厚みがあり、酒質良好であることを報告した。本試験では両ブドウについて中間工業規模の醸造を行い、市場ワインとしての評価を得るために、生成ワインの香味について調べた。

2. 実験方法
2-1 原料ブドウ
中間工業規模の試験醸造に用いた甲斐ブラン及び甲斐ノワールの収穫は、前報と同じ圃場（それぞれ一宮町矢作及び勝沼町勝沼、樹齢5年、標高400m）で、収穫はそれぞれ9月10日と9月22日に行行った。なお、成熟中の成分変化を調べるのに用いた甲斐ノワールは、これは別の圃場（勝沼町緑塚）のものでも用いた。ブドウ成熟中の成分変化を調べるための果粒は5樹から各10房を指定し、それぞれの房の上中下から各一粒ずつ合計150粒を取り扱った。果汁の調製、果粒径及び果粒重の固定は前報によった。

2-2 醸造方法
醸造方法は前報と同様に行った。ただし、原料ブドウ量は3倍量。即ち、甲斐ブランが280kg、甲斐ノワールが295kgの中間工業規模とした。甲斐ブランは圧搾果汁を1営8℃で静置し、その上澄み果汁を15℃で発酵させた。発酵は新洋技研（株）製サーマルタンクUS密閉300型（300L容、プライム冷却方式）を用い、発酵の停止はモロミの品温を4℃に低下させ、ビロリン酸カリウム200mg/Lを添加して行った。その後、4℃で静置し、4か月後に外観、酸味を確認した。一方、甲斐ノワールにおける仕込み時の糖度添加量は50mg/L、補釀は上白糖により5日目に行った。

2-3 果汁、モロミ及びワインの分析
果汁、モロミ及びワインの分析は前報によった。高級アルコール及びエステルの分析は、島津ガスクロマトラグラフGC-9Aを用い、SHINOHARAら及び清水らの方法に準じた既報の方法によった。

3. 結 果
3-1 甲斐ブランの醸造
3-1-1 成熟中の成分変化と収穫時期
1997年の気象条件を表1に示した。平均気温、降水量及び日照時間の資料は、甲府地方気象台の「山梨県農業気象旬報」によっている。平均気温は9月のいずれも平年期に比較して0.8度ほど高かった。降水量は7月にやや多かったものの、8月、9月が平年に比較して少なく、特に8月は85mmも少なかった。日照時間は7月、8月及び9月とも平年より多かった。気象条件

<table>
<thead>
<tr>
<th>月</th>
<th>平均気温℃</th>
<th>降水量mm</th>
<th>日照時間hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>21.9(21.3)</td>
<td>142(150)</td>
<td>154(141)</td>
</tr>
<tr>
<td>7</td>
<td>25.5(24.8)</td>
<td>176(118)</td>
<td>163(153)</td>
</tr>
<tr>
<td>9</td>
<td>26.8(25.9)</td>
<td>145(137)</td>
<td>222(185)</td>
</tr>
<tr>
<td>8</td>
<td>22.8(21.9)</td>
<td>115(150)</td>
<td>138(131)</td>
</tr>
</tbody>
</table>

() 内は平均の値
った。全般的にはブドウ栽培にとって1997年は、前報の1996年と同様に、良い気象条件であったと思われた。

甲斐ブランの成熟中の果粒径、果粒重、糖度（Brix）、pH及び酸度の変化を表2に示した。果粒径、果粒重はそれぞれ収穫期の9月9日には15.0mm、2.2gで、これは昨年と同様であり、甲州（18.1mm、4.0g）に比べてかなり小さいのが特徴である。また、昨年に比べて、果粒径、果粒重、Brix及びpHの上昇、総酸の減少は1週間程度早かった。ただし、収穫期のBrixの上昇は少なく、9月9日には、Brix19.0（昨年よりも0.8g/L低い）であったが、既に総酸は6.8g/Lまで減少しており、総酸の過剰の低下は生成ワインの酸味不足を招くと考え、昨年より1週間早い9月10日に収穫した。また、pHは成熟して上昇するが、この時は3.40で高かった。これは昨年よりも0.3高く、1994年と同様の値であった。この時の糖度比は27.9（9月9日）で高く、9月10日、仕込み用に収穫したもののが24.3であった。山田はブドウの収穫時期の9月、10月に降水量の多い甲府盆地においては、糖度比20以上が収穫の目安と報告しており、従って、本試験では収穫適期のものを醸造したことになる。

3-1-2 果汁処理、発酵経過及び生成ワインの成分

ブドウ圧搾果汁（190L）及び清澄処理後の上澄み果汁（167L）の分析結果を表3に示した。酒石酸の減少は顕著で（3.7g/L減少）、総酸は7.35g/Lから5.90g/Lに低下した。冷却処理で酒石酸の減少が大きいことは前報でも示されている（1.8g/L減少）が、今回の酒石酸減少量はさらに大きかった。発酵中におけるモロッコの品種と比重の経過はブドウ100kg仕込みで行った前報と同様で、発酵中のモロッコの品種は14℃の冷却タンクの温度設定（室温21.5~28℃）により、15℃に保持された。発酵の停止は前報の完全発酵とは異なり、甘みを感じ残すために、エチルが2.8g/100mL（比重0.994、アルコール分12.4%、v/v）となった発酵開始後13日目行った。

生成ワインの成分は表4に示した。総酸は5.6g/L、酒石酸は1.68g/Lと前報と同様であった。ポリフェノールは288mg/Lで前報の生成ワインよりも93mg/L多かったが、鑑評会出品甲州種白ワイン17点の平均値278mg/Lと同様であり、市販甲州種白ワイン34点の平均値548mg/Lよりも顕著に少なかった。ポリフェノールを減らすには本試験で行った

<table>
<thead>
<tr>
<th>表2 甲斐ブラン及び甲斐ノワールの熟成</th>
</tr>
</thead>
<tbody>
<tr>
<td>採取日</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>果粒径</td>
</tr>
<tr>
<td>果粒重</td>
</tr>
<tr>
<td>前汁率</td>
</tr>
<tr>
<td>Brix</td>
</tr>
<tr>
<td>pH</td>
</tr>
<tr>
<td>総酸（酒石酸）g/L</td>
</tr>
<tr>
<td>糖度比</td>
</tr>
</tbody>
</table>

1) 糖度比：Brix/総酸（g/100mL）

<table>
<thead>
<tr>
<th>表3 甲斐ブラン及び甲斐ノワールの果汁成分</th>
</tr>
</thead>
<tbody>
<tr>
<td>取液率</td>
</tr>
<tr>
<td>果汁</td>
</tr>
<tr>
<td>果汁残留（％,L/kg）</td>
</tr>
<tr>
<td>比重</td>
</tr>
<tr>
<td>比重換算糖度（g/100mL）</td>
</tr>
<tr>
<td>Brix</td>
</tr>
<tr>
<td>pH</td>
</tr>
<tr>
<td>酸度（酒石酸, g/L）</td>
</tr>
<tr>
<td>クエン酸（g/L）</td>
</tr>
<tr>
<td>酒石酸（g/L）</td>
</tr>
<tr>
<td>リンゴ酸（g/L）</td>
</tr>
</tbody>
</table>

1) 甲斐ノワールは5倍希釈後に測定

<table>
<thead>
<tr>
<th>表4 生成ワインの成分</th>
</tr>
</thead>
<tbody>
<tr>
<td>甲斐ブラン</td>
</tr>
<tr>
<td>乳酸添加量</td>
</tr>
<tr>
<td>比重</td>
</tr>
<tr>
<td>アルコール（vol%）</td>
</tr>
<tr>
<td>エチル（g/100mL）</td>
</tr>
<tr>
<td>pH</td>
</tr>
<tr>
<td>OD 430nm</td>
</tr>
<tr>
<td>OD 530nm</td>
</tr>
<tr>
<td>総酸（酒石酸, g/L）</td>
</tr>
<tr>
<td>クエン酸（g/L）</td>
</tr>
<tr>
<td>酒石酸（g/L）</td>
</tr>
<tr>
<td>リンゴ酸（g/L）</td>
</tr>
<tr>
<td>ポリフェノール（mg/L）</td>
</tr>
<tr>
<td>酚酸（g/L）</td>
</tr>
<tr>
<td>渡来亜硫酸（mg/L）</td>
</tr>
<tr>
<td>総亜硫酸（mg/L）</td>
</tr>
</tbody>
</table>

1) 甲斐ノワールは5倍希釈後に測定
表5 亜鉛プランにおけるエステル及び高級アルコールの生成（単位mg/L）

<table>
<thead>
<tr>
<th>モロミ日数</th>
<th>エステル</th>
<th>高級アルコール</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AmOAc</td>
<td>EtOAc</td>
</tr>
<tr>
<td>4日目</td>
<td>2.8</td>
<td>23</td>
</tr>
<tr>
<td>6日目</td>
<td>3.0</td>
<td>35</td>
</tr>
<tr>
<td>8日目</td>
<td>5.0</td>
<td>26</td>
</tr>
<tr>
<td>10日目</td>
<td>9.2</td>
<td>51</td>
</tr>
<tr>
<td>12日目</td>
<td>9.1</td>
<td>59</td>
</tr>
<tr>
<td>13日目</td>
<td>9.5</td>
<td>57</td>
</tr>
<tr>
<td>18日目</td>
<td>16.7</td>
<td>73</td>
</tr>
<tr>
<td>21日目</td>
<td>17.3</td>
<td>76</td>
</tr>
<tr>
<td>42日目</td>
<td>17.3</td>
<td>79</td>
</tr>
<tr>
<td>97日目</td>
<td>13.1</td>
<td>86</td>
</tr>
</tbody>
</table>

1）AmOAc（酸酵イソアミル）、EtOAc（酸酵エチル）、AmOH（イソアミルアルコール）、i-BuOH（イソブタノール）n-ProOH（アルコルプロパノール）
2）発酵停止：SO₂添加（100mg/L）と冷却（8℃）
3）たよし低い圧搾率、少し果汁は果皮、果梗との接触及び清澄などの果汁処理が有効であることはよく知られている。

3-1-3 酿造中の変化とエステル及び高級アルコールの生成

前報において亜鉛プランのワインは芳香成分の酸酵イソアミル（12.1mg/L）と脂肪酸エステル（3.4mg/L）の含量が多く、官能評価でもエステル香が高く、フルーティーでバランスが良いとされた。また、未発表であるが、イソアミル酸亜鉛のかもしぶ経过表6 亜鉛ノールのかもしぶ経过

<table>
<thead>
<tr>
<th>数日</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>品質（℃）</td>
<td>23.5</td>
<td>22</td>
<td>9</td>
<td>30</td>
<td>28</td>
<td>27</td>
</tr>
<tr>
<td>室温（℃）</td>
<td>22</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>OD 530mm（×5）</td>
<td>1.588</td>
<td>2.76</td>
<td>1.07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OD 430mm（×5）</td>
<td>0.938</td>
<td>1.22</td>
<td>0.937</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ポリフェノール（mg/L）</td>
<td>652</td>
<td>1.448</td>
<td>2.251</td>
<td>2.260</td>
<td></td>
<td></td>
</tr>
<tr>
<td>比重</td>
<td>1.083</td>
<td>1.008</td>
<td>1.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>アルコール（vol.％）</td>
<td>9.0</td>
<td>11.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>エキス（g/100mL）</td>
<td>4.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1）補釀、2）圧搾

アルコール含量が178mg/Lで少なかった。苦み成分であるイソアミルアルコールが少ないから完全発酵の辛口ワインにも関わらず官能評価で苦みが指摘されなかったと思われた。そこでこのことを確認するために、今回は発酵中のエタノール及び高級アルコールの動向を調べ、表5に示した。イソアミルアルコールは発酵の初期から盛んに生成されれば、発酵を停止した13日目でも105mg/Lに止まった。イソアミルアルコールについては平成9年度出島ワイン醸造会出品（辛口、19点）における含量が104mg/L〜296mg/L（平均197mg/L）であったことから、当ワインのイソアミルアルコール33mg/Lは非常に少ないことになり、官能的に苦味、乾燥が非常に少ないことと一致した。また酯酸イソアミルの生成は13日目から18日目にかけての5日間で、1に2倍の16.7mg/Lに急増した。酯酸イソアミルについてはShinoharaらは飽和量が1mg/Lであり、香気への寄与は大きいことを指摘しており、当ワインの含量は非常に多いので、香気は高いことが指摘された。

3-2-1 亜鉛ノールの醸造

3-2-1-1 収穫時期と果汁成分

亜鉛ノールの成熟中果粒径、果粒重、糖度（Brix）、pH及び総酸の変化を表2に示した。緑珠帯茎の9月2日から9月9日にBrix及び総酸の増減が少なく、成熟が続いている。一方、醸造に用いた風のブドウは昨年と同様風のものであったが、9月5日時点ではBrixが18.7で昨年の18.1に比べて低く、総酸は昨年よりもやや少なかった。1週間後の9月22日に収穫し、破砕、除梗した果汁の成分分析結果を表2に示した。Brixは19.8で総酸は1.8mg/Lであった。一週間でBrixは1上昇、総酸は2g/L減少しており、成熟はまだ続くものと思われた。糖度比は22.0（9月9日）、21.9（9月5日）、21.9（9月22日）で、高酸度で下評価に預け、処理を続けた。前述のように糖度比20以上が収穫の目安と報告されているので、本試験では醸造適期のものを醸造することにした。

3-2-2 発酵経過及び醸造ワインの成分

発酵中のミロモの品質と濁りの経過はブドウ100kg仕込みで行った前報と同じである。発酵中のミロモの分析は2日ごとにを行い、その時の室温、品質、濁り、アルコール、色調、ポリフェノール量などを表6に示した。主発酵中的ミロモの温度は4日日に28℃に達し、色調、ポリフェノールともにそれぞれ4日目にはほぼ最大の吸光度を2.76（530nm、5倍希釈）、2.25mg/Lに達した。従って、前報と同様に6日目で圧搾を行った。

6日目の比重は1.001であり、比重及びミロモ温度の経過は前報と同様であった。9日目にはミロモの比重が0.997で前日より変化せず、アルコール1.16％（vol/vol）、エキス量3.83g/100mLであり、アルコール発酵も終了したと思われたので乳酸菌スターターを21g（98mg/L）添加した。なお、この時のミロモのpHは3.46であった。スターター添加ミロモの品質は18～21℃で推移し、添加15日目にはリゴン酸が少量（878mg/L）残存したが、12日目には消失したので、この時点でピロビオ酸を200mg/L添加して乳酸発酵を停止した。乳酸菌スターター添加時と乳酸発酵終了時のワイン成分変化も表3に示した。総酸は8.0g/Lから6.8g/Lに、リゴン酸は3.10g/Lから殆どに、乳酸は0.46g/Lから2.63g/Lに、pHは3.34から3.57に変化した。色調（530nm、5倍希釈）は1.81で非常に高く、ポリフェノールも2、195mg/Lと多いのは前報と同様であった。

3-2-3 酿造中におけるエステル及び高級アルコールの生成

発酵ミロモ6日目と乳酸発酵を停止した21日目の生成ワインにおけるエステル及び高級アルコールの生成を表7に示した。
前報⑬において甲斐ノワールのワインは芳香成分の酸酵イソアミルが4.4mg/Lと含量が比較的多く、官能評価でもエステル香が高く、フルーティーでバランスが良いとされている。今回のワインでは痕跡で少なかった。一方、高級アルコールのイソアミルアルコールはモロミ6日目に443mg/L、12日目には505mg/Lであった。未発表であるが、前報⑬のワインではイソアミルアルコール含量が628mg/L多いことを認めており、苦み成分であるイソアミルアルコール⑭が多いことが自ワインでは任意で香が増加し、好ましくないが、赤ワインではイソアミルアルコールが多い方が、香に厚みを感じる。

表7 甲斐ノワールにおけるエステル及び高級アルコールの生成（単位 mg/L）

<table>
<thead>
<tr>
<th>モロミ</th>
<th>エステル</th>
<th>高級アルコール</th>
</tr>
</thead>
<tbody>
<tr>
<td>日数</td>
<td>AmOAc</td>
<td>EtOAc</td>
</tr>
<tr>
<td>6日目</td>
<td>0</td>
<td>97</td>
</tr>
<tr>
<td>21日目</td>
<td>113</td>
<td>505</td>
</tr>
</tbody>
</table>

1) 発酵停止：SO2添加（100mg/L）

させて好ましいことは既に報告した⑪。平成9年度山梨県ワイン鑑評会出品赤ワイン（23点）におけるイソアミルアルコール含量は238mg/L～569mg/L（平均371mg/L）であったことから、当ワインのイソアミルアルコールは非常に多いことが判明した。官能的には前報⑬と同様に、味の淡さは感じられず、香のバランスが良好であった。

4. 考 察

まだ未発表であるが、甲斐ブランの生成ワインは苦み成分であるイソアミルアルコールが少ない傾向がある。本実験でもこのブドウ使用のワインのイソアミルアルコールは105mg/Lで少なかった。低温発酵を行った時にはイソアミルアルコール生成が抑制されることが報告されているが、甲斐ブランでは顕著に少ないので、内部での発酵も同様であるのか、これから検討したい。また、このブドウ使用では酸液イソアミルの生成が顕著である前報⑬と同様であり、その時期は発酵停止処理（4℃冷却と亜硫酸添加）直後の5日間で、16.7mL/Lに達した。甲斐ブランでは香味ももちろん良好で、この2の醸造特性を有することを認めたので、白ワイン辛口用の良好なブドウと思われた。一方、甲斐ノワールの生成ワインはイソアミルアルコールが逆に多い傾向があり、味の薄さが感じられた。赤ワインではイソアミルアルコールが多い方が、味に厚みを感じさせて好ましいことは既に報告した。また、赤色とポリフェノールが多く出やすいのもこれまでとおりであった。香りはやや特徴に欠けるが、熟成や樽貯蔵あるいは使用酵母の選択などにより香りは増すと思われた。従って、甲斐ノワールは赤ワインの醸造用ブドウとして適していると思われた。

5. 結 言

280kgの甲斐ブラン、295kgの甲斐ノワールを用いて、中間工業規模における醸造試験を行った。甲斐ブランのワインはイソアミルアルコール含量が少なく、前報⑬と同様に、味の少ない良い辛口白ワインとなる。また、酸液イソアミルの生成は発酵終了時急速に増加した。甲斐ノワールのワインは香りはやや特徴に欠けたが、色調、ボリューム及びイソアミルアルコールが多く、質感であった。以上より、甲斐ブラン及び甲斐ノワールはそれぞれ白ワイン辛口用、赤ワイン用ブドウとして良いと考えられることが確認された。最後に、分析のご協力いただいた当ワインセンターの三木弘教氏、ブドウを提供していただきました矢作洋酒（株）、麻屋葡萄酒（株）及びサッポロワイン（株）勝沼ワイナリーの各位に感謝いたします。

参考文献
1) 近江雄・原川守・中村忠博・荻野敏・小宮山美弘：山梨工技師研究報告、9、52（1995）
2) 同上：山梨工技師研究報告、10、54（1996）
3) 同上：山梨工技師研究報告、8、46（1994）
4) 近江雄・原川守・中村忠博・荻野敏・小宮山美弘：ASEV Jpn.Rep.,5、2、180（1994）
5) 原川守・中村忠博・三科浩仁：山梨工技師研究報告、11、79（1997）
6) Takashi SHINOHARA and Masazumi WATANABE：Agric. Biol. Chem., 40、2475（1976）
7) 清水純一：渡辺正澄：醸造学、50、386（1981）
8) 飯野修一：小宮山美弘：山梨工技師研究報告、5、69（1991）
9) （財）日本気象協会甲府支部編集：山梨県農業気象月報、第18巻（1997）
10) 山川吉祥：講座学、53、4、396（1985）
11) 飯野修一、小宮山美弘：山梨工技師研究報告、12、1998
13) 飯野修一、渡辺正澄：醸造、89、12、996（1994）
15) 飯野修一、渡辺正澄：山梨工技師研究報告、3、69（1998）
16) 粟原隆：渡辺正澄：農化、52、8、309（1978）