第23回山梨県ワイン鑑評会出品酒の調査報告

原川 守・中山 忠博・荻野 敏・辻 政雄

A Report on the Wines Presented through the 23th YAMANASHI Prefectural Exhibition

Manor HARAKAWA, Tadahiro NAKAYAMA, Satoshi OGINO and Masao TSUJI

本調査報告は、1993年6月15日（火）にワインセンターにおいて山梨県工業技術センターと山梨県果実酒造組合の共催により、開催した第23回山梨県ワイン鑑評会出品酒の調査結果である。

1. 出品酒

出品酒数は434品、出品者数97名（うち参考出品33名）でその内訳を表1に示した。出品酒数は前年と同数であったが、出品者数は前年より1点減少した。

<table>
<thead>
<tr>
<th>区 分</th>
<th>品種</th>
<th>出品数</th>
</tr>
</thead>
<tbody>
<tr>
<td>白ワイン</td>
<td>新酒</td>
<td>32 KN</td>
</tr>
<tr>
<td></td>
<td>古酒</td>
<td>20 KO</td>
</tr>
<tr>
<td></td>
<td>新酒</td>
<td>4 SN</td>
</tr>
<tr>
<td></td>
<td>古酒</td>
<td>11 SO</td>
</tr>
<tr>
<td>赤ワイン</td>
<td>新酒</td>
<td>9 RN</td>
</tr>
<tr>
<td></td>
<td>古酒</td>
<td>15 RO</td>
</tr>
<tr>
<td>ロゼ</td>
<td>4 P</td>
<td></td>
</tr>
<tr>
<td>参考出品</td>
<td>マニアス</td>
<td>1 F</td>
</tr>
<tr>
<td></td>
<td>スパークリング</td>
<td>1 F</td>
</tr>
<tr>
<td>合計</td>
<td>97</td>
<td></td>
</tr>
</tbody>
</table>

出品酒のタイプ別数とその略号を表1に示し、また原料ぶどうの品種と略号を表2に示した。白ワインは87点の出品があり、その内訳は甲州種が52点、その他が15点であった。また新酒は甲州種が32点、その他が4点。古酒は甲州種が20点、その他が11点であった。ロゼワインは4点であった。

赤ワインは24点の出品があり、新酒が9点。古酒が15点であった。

参考出品のアソビワイン、甲州種のスパークリングワインの各1点であった。

前年に比べると甲州種新酒が3点、その他の古酒が4点増加し、甲州種新酒が1点、赤ワインの新酒が3点、ロゼワインが5点減少し、その他の新酒、赤ワインの新酒は前年と同数であった。

<table>
<thead>
<tr>
<th>略号</th>
<th>品種</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>甲州</td>
</tr>
<tr>
<td>S</td>
<td>セミヨン</td>
</tr>
<tr>
<td>R</td>
<td>リースリング</td>
</tr>
<tr>
<td>CH</td>
<td>シャルドネ</td>
</tr>
<tr>
<td>Z</td>
<td>元農</td>
</tr>
<tr>
<td>SB</td>
<td>サンピニョ・ブラン</td>
</tr>
</tbody>
</table>

2. 塗抹法

審査は山梨大学、国税庁東京国税局鑑定室、同醸造試験所、ワインメーカー及び製造技術センターの専門家20名が5名ずつ（1名、2名、3名、4名、5名）で採点を行い、その平均値の4段階（A=2.0、2.0＜B＜3.0、3.0＜C＜4.0、4.0＜D）にランク分けした。

3. 分析方法

比重（S.G.）、アルコール（Alc.）、エキス（Ex.）、
pH、酸度（T.A.）、遊離亜硫酸（F-SO₃）、総酸度（T-SO₃）、鉄（Fe）、銅（Cu）及び吸光度（OD）は原報の方法によった。

リン酸（M.A.）、乳酸（L.A.）はShodex OAシステムにより分析した。

4. 出品酒の傾向

本年度の出品酒の傾向を分析すると、年の特徴が浮かび上がる。
第一の特徴は甲州種の新酒に4点、甲州種の古酒に3点のジュール・リー・製法の辛口ワインが出品されたことである。これに加え、新旧の消費者に好まれる甲州種ワインの個性化を図るとともに、消費者ニーズに応えるために甲州種の辛口ワインの醸造に力を注いでいる。甲州種の辛口の製法としてジュール・リー製法が導入されたと考えて良いであろう。

その他白ワイン11点のうちシャルドネ種が4点を占めたが、これも前進の辛口を嗜好する消費者ニーズやシャルドネ種を好む世界の傾向を反映したもので、昨年度と同様であった。

第二の特徴は甲州種の発酵後各が新酒で2点、古酒で2点を計4点出品されたことである。雑を複数年に甲州種の釀造に活かし、甲州種ワインの高付加価値化を図ろうというメーカーの姿勢が伺える。

第三の特徴は国内で栽培された醸造専用ぶどうのワインが多数出品されたことである。醸造専用ぶどうを使用したワインは、輸入バルククレドに依存することが多かったが、地方で栽培したぶどうでワインを醸造するというワイン醸造の基本的な考えが再認識されたからであり、醸造専用ぶどうの栽培、醸造にメーカーが力をいれていることである。表3に醸造専用ぶどうの品種名とその栽培地が示されている。

表3 醸造用ぶどうの品種名と栽培地

<table>
<thead>
<tr>
<th>区分</th>
<th>品種</th>
<th>枚数</th>
<th>山梨県</th>
<th>関西県</th>
<th>送料費</th>
<th>酒入数</th>
<th>輸入方式</th>
</tr>
</thead>
<tbody>
<tr>
<td>その他</td>
<td>SN</td>
<td>S</td>
<td>2</td>
<td>1</td>
<td>(1)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>白ワイン</td>
<td>Ri</td>
<td>2</td>
<td>1</td>
<td>(1)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO</td>
<td>＊S</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>＊Ri</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>＊Ch</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>小計</td>
<td>14</td>
<td>6</td>
<td>5</td>
<td>(2)</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ボリューム</td>
<td>RN</td>
<td>CS</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Me</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>CS</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Me</td>
<td>2</td>
<td>2</td>
<td>(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>1</td>
<td>1</td>
<td>(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>小計</td>
<td>18</td>
<td>12</td>
<td>4</td>
<td>(3)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td>33</td>
<td>18</td>
<td>9</td>
<td>(5)</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

セミロン5点のうち4点が山梨県で栽培されたものであったが、世界に新ワインの多様性として評価が高いシャルドネ種は4点うち3点が県外（すべて長野県と推定される）であった。

赤ワインでは醸造専用ぶどうを使用したワイン18点のうち10点が山梨県産カベルネ・ソーヴィニヨン種のワインであった。
た。県外産醸造専用ぶどうの白ワインは4点でメルロー種（長野県産）が主体であった。これら醸造専用ぶどうの栽培地はその品種により異なっている。白ワインのセミオン種は山梨県、シヴァルドネ種は長野県、赤ワインのカベルネ・ソーヴィニヨン種は長野市、メルロー種は長野県が多かった。それぞれの土地、気候等を醸造専用ぶどうの栽培が検討されている。

5．審査及び分析結果
白ワインのタイプ別審査及び成分分析結果の平均値を表4に、各出品品の審査結果及び成分値を表5に示した。原料ぶどうの略号間の「*」はブレンドを、また数字はブレンド割合を表す。

97点の出品品のうちAランクが9点、Bランクが76点、Cランクが12点で、Dランクは1点もなかった。前年に比べAランクが減少し、Dランクが増えるという良好な結果であった。

1992年は、ワイン用ぶどうの栽培には適した天候の年であり、特に甲府県の新酒はその天候を反映し、酸がしっかりし、しかも糖に厚みのあるワインに仕上がっていた。

赤ワインの古酒は原料ぶどうの品種特性が感じられる優秀なワインが出品されていた。山梨県産カベルネ・ソーヴィニヨン種のワインは優良であった。

全体的にも優良なワインが出品されていて、遊離亜硫酸濃度が高かったものの、貯蔵管理の悪さを指摘されたワインが数点あり、さらなる技術力の向上が望まれる。

<table>
<thead>
<tr>
<th>PH</th>
<th>T.A. (g/L)</th>
<th>P-SO₂ (mg/L)</th>
<th>T-SO₂ (mg/L)</th>
<th>OD (450 nm)</th>
<th>OD (630 nm)</th>
<th>Fe (μg/L)</th>
<th>Cu (μg/L)</th>
<th>M.A. (g/L)</th>
<th>L.A. (g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.14</td>
<td>6.4</td>
<td>49</td>
<td>133</td>
<td>0.040</td>
<td>21.3</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.23</td>
<td>5.6</td>
<td>34</td>
<td>137</td>
<td>0.047</td>
<td>12.6</td>
<td>0.22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.34</td>
<td>7.0</td>
<td>40</td>
<td>118</td>
<td>0.083</td>
<td>1.3</td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.33</td>
<td>6.2</td>
<td>31</td>
<td>154</td>
<td>0.064</td>
<td>1.7</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.48</td>
<td>7.0</td>
<td>23</td>
<td>92</td>
<td>0.333</td>
<td>0.474</td>
<td>2.4</td>
<td>0.26</td>
<td>1.99</td>
<td>1.10</td>
</tr>
<tr>
<td>3.66</td>
<td>5.4</td>
<td>22</td>
<td>112</td>
<td>0.533</td>
<td>0.621</td>
<td>3.0</td>
<td>0.28</td>
<td>0.47</td>
<td>2.06</td>
</tr>
<tr>
<td>3.44</td>
<td>5.9</td>
<td>24</td>
<td>126</td>
<td>0.319</td>
<td>0.421</td>
<td>1.5</td>
<td>0.39</td>
<td>3.01</td>
<td>0.23</td>
</tr>
</tbody>
</table>

参考文献
1) 佐野敏・小沢俊治：醸協、80、654（1985）
2) 佐野健一・渡辺正幸・佐野敏・前田秀人・小沢俊治：山梨食工情報、17、50（1985）
3) 佐野健一・藤尾忠夫・渡辺正平：山梨食工情報、13、47（1981）
<table>
<thead>
<tr>
<th>区分</th>
<th>GRAPE</th>
<th>YEAR</th>
<th>SCOR E</th>
<th>CLASS</th>
<th>REVIEW</th>
<th>S.G.</th>
<th>Alc. V/V%</th>
</tr>
</thead>
<tbody>
<tr>
<td>KN</td>
<td>K</td>
<td>92</td>
<td>1.7</td>
<td>A</td>
<td>シュリー</td>
<td>0.988</td>
<td>12.9</td>
</tr>
<tr>
<td>KN</td>
<td>K</td>
<td>92</td>
<td>2.0</td>
<td>A</td>
<td>シュリー</td>
<td>0.991</td>
<td>13.1</td>
</tr>
<tr>
<td>KN</td>
<td>K</td>
<td>92</td>
<td>2.4</td>
<td>B</td>
<td>シュリー</td>
<td>0.992</td>
<td>12.5</td>
</tr>
<tr>
<td>KN</td>
<td>K</td>
<td>92</td>
<td>2.6</td>
<td>B</td>
<td>シュリー、フラット</td>
<td>0.990</td>
<td>12.5</td>
</tr>
<tr>
<td>KN</td>
<td>K</td>
<td>92</td>
<td>2.8</td>
<td>B</td>
<td>硝発酵</td>
<td>0.994</td>
<td>11.9</td>
</tr>
<tr>
<td>KN</td>
<td>K</td>
<td>92</td>
<td>2.4</td>
<td>B</td>
<td>硝発酵</td>
<td>0.995</td>
<td>11.6</td>
</tr>
<tr>
<td>KN</td>
<td>K</td>
<td>92</td>
<td>2.1</td>
<td>B</td>
<td>硝発酵</td>
<td>0.995</td>
<td>12.4</td>
</tr>
<tr>
<td>KN</td>
<td>K</td>
<td>92</td>
<td>2.2</td>
<td>B</td>
<td>硝発酵</td>
<td>0.995</td>
<td>12.7</td>
</tr>
<tr>
<td>KN</td>
<td>K</td>
<td>92</td>
<td>2.2</td>
<td>B</td>
<td>硝発酵</td>
<td>0.997</td>
<td>11.6</td>
</tr>
<tr>
<td>KN</td>
<td>K</td>
<td>92</td>
<td>3.0</td>
<td>B</td>
<td>硝発酵</td>
<td>0.996</td>
<td>12.7</td>
</tr>
<tr>
<td>KN</td>
<td>K</td>
<td>92</td>
<td>2.4</td>
<td>B</td>
<td>硝発酵</td>
<td>0.997</td>
<td>12.0</td>
</tr>
<tr>
<td>KN</td>
<td>K</td>
<td>92</td>
<td>2.4</td>
<td>B</td>
<td>硝発酵</td>
<td>0.997</td>
<td>12.6</td>
</tr>
<tr>
<td>KN</td>
<td>K</td>
<td>92</td>
<td>2.5</td>
<td>B</td>
<td>硝発酵</td>
<td>0.998</td>
<td>12.3</td>
</tr>
<tr>
<td>KN</td>
<td>K</td>
<td>92</td>
<td>2.4</td>
<td>B</td>
<td>硝発酵</td>
<td>1.000</td>
<td>11.2</td>
</tr>
<tr>
<td>KN</td>
<td>K</td>
<td>92</td>
<td>2.9</td>
<td>B</td>
<td>硝発酵</td>
<td>1.000</td>
<td>11.7</td>
</tr>
<tr>
<td>KN</td>
<td>K</td>
<td>92</td>
<td>2.8</td>
<td>B</td>
<td>硝発酵</td>
<td>1.000</td>
<td>12.3</td>
</tr>
<tr>
<td>KN</td>
<td>K</td>
<td>92</td>
<td>2.4</td>
<td>B</td>
<td>硝発酵</td>
<td>0.999</td>
<td>13.2</td>
</tr>
<tr>
<td>KN</td>
<td>K</td>
<td>92</td>
<td>2.9</td>
<td>B</td>
<td>硝発酵</td>
<td>1.000</td>
<td>12.5</td>
</tr>
<tr>
<td>KN</td>
<td>K</td>
<td>92</td>
<td>2.1</td>
<td>B</td>
<td>硝発酵</td>
<td>1.000</td>
<td>12.7</td>
</tr>
<tr>
<td>KN</td>
<td>K</td>
<td>92</td>
<td>2.4</td>
<td>B</td>
<td>硝発酵</td>
<td>1.001</td>
<td>11.8</td>
</tr>
<tr>
<td>KN</td>
<td>K</td>
<td>92</td>
<td>2.5</td>
<td>B</td>
<td>硝発酵</td>
<td>1.002</td>
<td>11.6</td>
</tr>
<tr>
<td>KN</td>
<td>K</td>
<td>92</td>
<td>2.6</td>
<td>B</td>
<td>硝発酵</td>
<td>1.002</td>
<td>11.6</td>
</tr>
<tr>
<td>KN</td>
<td>K</td>
<td>92</td>
<td>2.0</td>
<td>A</td>
<td>かおり良好</td>
<td>1.005</td>
<td>9.8</td>
</tr>
<tr>
<td>KN</td>
<td>K</td>
<td>92</td>
<td>2.5</td>
<td>B</td>
<td>279酵母</td>
<td>1.009</td>
<td>7.8</td>
</tr>
<tr>
<td>KN</td>
<td>K</td>
<td>92</td>
<td>2.9</td>
<td>B</td>
<td>硝発酵</td>
<td>1.004</td>
<td>12.4</td>
</tr>
<tr>
<td>KN</td>
<td>K</td>
<td>92</td>
<td>2.2</td>
<td>B</td>
<td>硝発酵</td>
<td>1.005</td>
<td>11.9</td>
</tr>
<tr>
<td>KN</td>
<td>K</td>
<td>92</td>
<td>2.1</td>
<td>B</td>
<td>硝発酵</td>
<td>1.006</td>
<td>12.8</td>
</tr>
<tr>
<td>KN</td>
<td>K</td>
<td>92</td>
<td>4.0</td>
<td>C</td>
<td>硝発酵</td>
<td>1.008</td>
<td>11.6</td>
</tr>
<tr>
<td>KN</td>
<td>K</td>
<td>92</td>
<td>2.5</td>
<td>B</td>
<td>硝発酵</td>
<td>1.010</td>
<td>10.0</td>
</tr>
<tr>
<td>KN</td>
<td>K</td>
<td>92</td>
<td>2.5</td>
<td>B</td>
<td>硝発酵</td>
<td>1.008</td>
<td>11.7</td>
</tr>
<tr>
<td>KN</td>
<td>K</td>
<td>92</td>
<td>3.2</td>
<td>C</td>
<td>亜鉛実験注意</td>
<td>1.010</td>
<td>12.5</td>
</tr>
<tr>
<td>KO</td>
<td>K</td>
<td>91</td>
<td>2.5</td>
<td>B</td>
<td>シュリー</td>
<td>0.992</td>
<td>12.0</td>
</tr>
<tr>
<td>KO</td>
<td>K</td>
<td>91</td>
<td>3.2</td>
<td>C</td>
<td>シュリー、硝発酵</td>
<td>0.991</td>
<td>12.7</td>
</tr>
<tr>
<td>KO</td>
<td>K</td>
<td>91</td>
<td>2.1</td>
<td>B</td>
<td>シュリー</td>
<td>0.998</td>
<td>10.8</td>
</tr>
<tr>
<td>KO</td>
<td>K</td>
<td>91</td>
<td>3.2</td>
<td>C</td>
<td>硝発酵</td>
<td>0.991</td>
<td>12.7</td>
</tr>
<tr>
<td>KO</td>
<td>K</td>
<td>91</td>
<td>2.6</td>
<td>B</td>
<td>硝発酵</td>
<td>0.992</td>
<td>12.3</td>
</tr>
<tr>
<td>KO</td>
<td>K</td>
<td>91</td>
<td>2.3</td>
<td>B</td>
<td>硝発酵</td>
<td>0.995</td>
<td>12.7</td>
</tr>
<tr>
<td>KO</td>
<td>K</td>
<td>91</td>
<td>2.5</td>
<td>B</td>
<td>硝発酵</td>
<td>0.995</td>
<td>10.5</td>
</tr>
<tr>
<td>KO</td>
<td>K</td>
<td>91</td>
<td>2.7</td>
<td>B</td>
<td>硝発酵</td>
<td>0.993</td>
<td>12.7</td>
</tr>
<tr>
<td>KO</td>
<td>K</td>
<td>91</td>
<td>4.0</td>
<td>C</td>
<td>硝発酵</td>
<td>0.997</td>
<td>9.2</td>
</tr>
<tr>
<td>KO</td>
<td>K</td>
<td>91</td>
<td>3.5</td>
<td>C</td>
<td>硝発酵</td>
<td>0.985</td>
<td>13.0</td>
</tr>
<tr>
<td>KO</td>
<td>K</td>
<td>91</td>
<td>2.7</td>
<td>B</td>
<td>亜鉛酸化</td>
<td>0.997</td>
<td>12.5</td>
</tr>
<tr>
<td>KO</td>
<td>K</td>
<td>91</td>
<td>2.1</td>
<td>B</td>
<td>硝発酵</td>
<td>0.999</td>
<td>11.3</td>
</tr>
<tr>
<td>KO</td>
<td>K</td>
<td>91</td>
<td>2.4</td>
<td>B</td>
<td>硝発酵</td>
<td>1.000</td>
<td>11.3</td>
</tr>
<tr>
<td>KO</td>
<td>K</td>
<td>90</td>
<td>2.4</td>
<td>B</td>
<td>亜鉛実験注意</td>
<td>0.989</td>
<td>12.8</td>
</tr>
<tr>
<td>KO</td>
<td>K</td>
<td>91</td>
<td>3.3</td>
<td>C</td>
<td>硝発酵</td>
<td>1.000</td>
<td>13.9</td>
</tr>
<tr>
<td>KO</td>
<td>K</td>
<td>88</td>
<td>2.8</td>
<td>B</td>
<td>硝発酵</td>
<td>1.004</td>
<td>11.5</td>
</tr>
<tr>
<td>Ex. g/L</td>
<td>PH</td>
<td>T.A. g/L</td>
<td>F-SO₃ g/L</td>
<td>T-SO₃ g/L</td>
<td>OD 490nm</td>
<td>OD 550nm</td>
<td>Fe₂⁺ mg/L</td>
</tr>
<tr>
<td>--------</td>
<td>----</td>
<td>----------</td>
<td>------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>1.28</td>
<td>3.04</td>
<td>4.9</td>
<td>34</td>
<td>60</td>
<td>0.036</td>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td>2.24</td>
<td>3.10</td>
<td>5.5</td>
<td>38</td>
<td>99</td>
<td>0.028</td>
<td>1.0</td>
<td>0.19</td>
</tr>
<tr>
<td>2.22</td>
<td>3.15</td>
<td>6.6</td>
<td>40</td>
<td>80</td>
<td>0.047</td>
<td>0.9</td>
<td>0.18</td>
</tr>
<tr>
<td>2.42</td>
<td>3.22</td>
<td>5.9</td>
<td>19</td>
<td>65</td>
<td>0.036</td>
<td>0.5</td>
<td>0.15</td>
</tr>
<tr>
<td>1.80</td>
<td>3.08</td>
<td>5.8</td>
<td>8</td>
<td>34</td>
<td>0.065</td>
<td>0.7</td>
<td>0.12</td>
</tr>
<tr>
<td>2.80</td>
<td>3.25</td>
<td>5.8</td>
<td>70</td>
<td>163</td>
<td>0.028</td>
<td>1.2</td>
<td>0.21</td>
</tr>
<tr>
<td>2.66</td>
<td>3.10</td>
<td>6.0</td>
<td>40</td>
<td>131</td>
<td>0.029</td>
<td>0.6</td>
<td>0.22</td>
</tr>
<tr>
<td>3.07</td>
<td>3.10</td>
<td>5.8</td>
<td>38</td>
<td>80</td>
<td>0.039</td>
<td>1.1</td>
<td>0.23</td>
</tr>
<tr>
<td>3.17</td>
<td>3.29</td>
<td>6.2</td>
<td>46</td>
<td>181</td>
<td>0.049</td>
<td>3.5</td>
<td>0.25</td>
</tr>
<tr>
<td>3.88</td>
<td>3.17</td>
<td>6.0</td>
<td>32</td>
<td>136</td>
<td>0.041</td>
<td>0.8</td>
<td>0.46</td>
</tr>
<tr>
<td>5.43</td>
<td>3.28</td>
<td>5.3</td>
<td>179</td>
<td>570</td>
<td>0.058</td>
<td>13.1</td>
<td>0.18</td>
</tr>
<tr>
<td>5.99</td>
<td>3.28</td>
<td>7.5</td>
<td>56</td>
<td>141</td>
<td>0.024</td>
<td>2.1</td>
<td>0.35</td>
</tr>
<tr>
<td>3.57</td>
<td>3.08</td>
<td>5.0</td>
<td>72</td>
<td>208</td>
<td>0.027</td>
<td>1.0</td>
<td>0.35</td>
</tr>
<tr>
<td>3.62</td>
<td>3.12</td>
<td>9.4</td>
<td>34</td>
<td>69</td>
<td>0.048</td>
<td>5.3</td>
<td>0.35</td>
</tr>
<tr>
<td>4.03</td>
<td>3.03</td>
<td>5.9</td>
<td>40</td>
<td>128</td>
<td>0.031</td>
<td>1.6</td>
<td>0.17</td>
</tr>
<tr>
<td>4.19</td>
<td>3.14</td>
<td>6.3</td>
<td>27</td>
<td>97</td>
<td>0.038</td>
<td>2.2</td>
<td>0.28</td>
</tr>
<tr>
<td>4.32</td>
<td>3.39</td>
<td>5.8</td>
<td>35</td>
<td>136</td>
<td>0.062</td>
<td>0.9</td>
<td>0.16</td>
</tr>
<tr>
<td>4.34</td>
<td>3.16</td>
<td>6.2</td>
<td>38</td>
<td>136</td>
<td>0.027</td>
<td>1.1</td>
<td>0.17</td>
</tr>
<tr>
<td>4.40</td>
<td>3.15</td>
<td>7.1</td>
<td>26</td>
<td>119</td>
<td>0.046</td>
<td>1.1</td>
<td>0.20</td>
</tr>
<tr>
<td>4.47</td>
<td>3.18</td>
<td>7.9</td>
<td>58</td>
<td>154</td>
<td>0.030</td>
<td>0.7</td>
<td>0.21</td>
</tr>
<tr>
<td>4.47</td>
<td>3.14</td>
<td>5.5</td>
<td>42</td>
<td>186</td>
<td>0.044</td>
<td>1.2</td>
<td>0.29</td>
</tr>
<tr>
<td>4.68</td>
<td>3.52</td>
<td>5.9</td>
<td>16</td>
<td>43</td>
<td>0.030</td>
<td>0.6</td>
<td>0.37</td>
</tr>
<tr>
<td>4.79</td>
<td>3.36</td>
<td>7.8</td>
<td>82</td>
<td>176</td>
<td>0.040</td>
<td>1.9</td>
<td>0.15</td>
</tr>
<tr>
<td>4.22</td>
<td>3.17</td>
<td>6.1</td>
<td>30</td>
<td>86</td>
<td>0.032</td>
<td>0.7</td>
<td>0.82</td>
</tr>
<tr>
<td>5.33</td>
<td>3.15</td>
<td>4.7</td>
<td>16</td>
<td>80</td>
<td>0.040</td>
<td>0.9</td>
<td>0.88</td>
</tr>
<tr>
<td>5.14</td>
<td>2.95</td>
<td>10.2</td>
<td>90</td>
<td>199</td>
<td>0.048</td>
<td>14.3</td>
<td>0.16</td>
</tr>
<tr>
<td>5.54</td>
<td>3.17</td>
<td>6.5</td>
<td>40</td>
<td>90</td>
<td>0.034</td>
<td>0.9</td>
<td>0.19</td>
</tr>
<tr>
<td>5.60</td>
<td>3.05</td>
<td>6.0</td>
<td>40</td>
<td>95</td>
<td>0.059</td>
<td>0.5</td>
<td>0.16</td>
</tr>
<tr>
<td>6.24</td>
<td>3.00</td>
<td>8.1</td>
<td>21</td>
<td>74</td>
<td>0.077</td>
<td>2.5</td>
<td>0.99</td>
</tr>
<tr>
<td>6.27</td>
<td>3.25</td>
<td>6.7</td>
<td>64</td>
<td>261</td>
<td>0.033</td>
<td>1.3</td>
<td>0.25</td>
</tr>
<tr>
<td>6.27</td>
<td>3.16</td>
<td>6.3</td>
<td>32</td>
<td>135</td>
<td>0.036</td>
<td>1.1</td>
<td>0.83</td>
</tr>
<tr>
<td>7.60</td>
<td>3.20</td>
<td>6.9</td>
<td>138</td>
<td>284</td>
<td>0.044</td>
<td>0.6</td>
<td>0.43</td>
</tr>
<tr>
<td>2.19</td>
<td>3.15</td>
<td>6.2</td>
<td>19</td>
<td>62</td>
<td>0.035</td>
<td>1.2</td>
<td>0.17</td>
</tr>
<tr>
<td>2.25</td>
<td>3.29</td>
<td>4.9</td>
<td>3</td>
<td>77</td>
<td>0.069</td>
<td>1.8</td>
<td>0.43</td>
</tr>
<tr>
<td>3.41</td>
<td>3.16</td>
<td>6.2</td>
<td>11</td>
<td>56</td>
<td>0.039</td>
<td>0.8</td>
<td>0.16</td>
</tr>
<tr>
<td>2.35</td>
<td>3.16</td>
<td>6.3</td>
<td>108</td>
<td>194</td>
<td>0.061</td>
<td>1.0</td>
<td>0.14</td>
</tr>
<tr>
<td>2.27</td>
<td>3.25</td>
<td>5.0</td>
<td>30</td>
<td>141</td>
<td>0.061</td>
<td>0.9</td>
<td>0.13</td>
</tr>
<tr>
<td>2.39</td>
<td>3.18</td>
<td>5.6</td>
<td>12</td>
<td>149</td>
<td>0.036</td>
<td>1.1</td>
<td>0.19</td>
</tr>
<tr>
<td>2.22</td>
<td>3.20</td>
<td>4.6</td>
<td>32</td>
<td>211</td>
<td>0.038</td>
<td>0.7</td>
<td>0.14</td>
</tr>
<tr>
<td>2.52</td>
<td>3.36</td>
<td>7.8</td>
<td>46</td>
<td>182</td>
<td>0.060</td>
<td>2.6</td>
<td>0.14</td>
</tr>
<tr>
<td>2.55</td>
<td>3.90</td>
<td>4.7</td>
<td>8</td>
<td>104</td>
<td>0.062</td>
<td>0.5</td>
<td>0.13</td>
</tr>
<tr>
<td>3.26</td>
<td>3.32</td>
<td>5.1</td>
<td>19</td>
<td>91</td>
<td>0.032</td>
<td>3.3</td>
<td>0.49</td>
</tr>
<tr>
<td>3.50</td>
<td>3.41</td>
<td>4.7</td>
<td>15</td>
<td>93</td>
<td>0.059</td>
<td>0.4</td>
<td>0.30</td>
</tr>
<tr>
<td>3.90</td>
<td>3.25</td>
<td>4.8</td>
<td>30</td>
<td>169</td>
<td>0.038</td>
<td>0.7</td>
<td>0.16</td>
</tr>
<tr>
<td>4.05</td>
<td>3.30</td>
<td>5.3</td>
<td>50</td>
<td>163</td>
<td>0.029</td>
<td>1.1</td>
<td>0.22</td>
</tr>
<tr>
<td>4.24</td>
<td>3.17</td>
<td>6.2</td>
<td>62</td>
<td>152</td>
<td>0.066</td>
<td>0.8</td>
<td>0.15</td>
</tr>
<tr>
<td>4.81</td>
<td>3.21</td>
<td>5.3</td>
<td>42</td>
<td>133</td>
<td>0.040</td>
<td>2.1</td>
<td>0.25</td>
</tr>
<tr>
<td>5.25</td>
<td>3.00</td>
<td>5.0</td>
<td>10</td>
<td>80</td>
<td>0.063</td>
<td>1.3</td>
<td>0.31</td>
</tr>
</tbody>
</table>
| 区分 | GRAPE | YEAR | SCORE | CLASS | REVIEW | S.G. | Alc.
|------|-------|------|-------|-------|--------|------|------
| KG | K | 91 | 2.3 | B | 酵母臭 | 1.005 | 11.4
| KG | K | 91 | 2.8 | B | 1.008 | 11.0
| KG | K | 90 | 1.9 | A | 1.010 | 10.9
| KG | K | 89 | 2.3 | B | 1.011 | 11.6
| SN | S | 92 | 2.4 | B | シェルリー、苦酸化特性 | 0.991 | 13.3
| SN | S | 92 | 2.5 | B | スキンコンタ品種特性 | 0.996 | 13.1
| SN | Ri | 92 | 2.1 | B | 1.002 | 11.4
| SN | Ri | 92 | 2.0 | A | かおり良好 | 1.013 | 8.8
| SO | K70 * S30 | 91 | 1.9 | A | 1.003 | 11.9
| SO | K60 * S40 | 91 | 2.7 | B | 酸化、エタノール | 1.000 | 12.1
| SO | K60 * S40 | 86 | 2.8 | B | 酸化、エタノール | 0.990 | 13.3
| SO | S | 90 | 2.7 | B | 酸化、酸化 | 0.990 | 12.7
| SO | K95 * Ri | 90 | 2.7 | B | フラット | 0.994 | 11.9
| SO | Ze | 80 | 2.3 | B | 1.000 | 11.5
| SO | Ch90 * K10 | 90 | 2.4 | B | 0.991 | 12.5
| SO | Ch | 90 | 2.6 | B | 酸化、管理注意 | 0.993 | 13.0
| SO | Ch | 89 | 2.2 | B | 酸化 | 0.994 | 12.4
| SO | Ch | 90 | 2.5 | B | 0.992 | 12.2
| SO | S8 | 90 | 2.6 | B | 0.990 | 13.2
| RN | MA | 92 | 2.8 | B | フラット | 0.996 | 13.1
| RN | MA | 92 | 2.5 | B | 0.997 | 9.8
| RN | MA | 92 | 3.2 | C | 異臭 | 0.994 | 12.4
| RN | MA | 92 | 2.5 | B | 一部MC | 0.992 | 12.9
| RN | CS | 92 | 2.7 | B | オリ臭 | 0.995 | 13.0
| RN | CS | 92 | 2.1 | B | 0.994 | 13.4
| RN | CS | 92 | 2.5 | B | 0.994 | 13.4
| RN | Me | 92 | 2.6 | B | 色つき悪い | 0.996 | 12.4
| RN | CF | 92 | 2.7 | B | かおり原因 | 0.994 | 11.7
| RO | MA | 89 | 2.4 | B | 酸化 | 0.993 | 12.1
| RO | MA70 * CS20 | 90 | 2.5 | B | 0.996 | 10.4
| RO | CS60 * MA40 | 91 | 3.8 | C | film、酸化 | 0.994 | 10.9
| RO | CS70 * MA30 | 90 | 2.1 | B | 0.993 | 12.1
| RO | CS70 * S40 | 86 | 2.5 | B | 0.994 | 12.3
| RO | Me80 * CS30 | 90 | 3.0 | A | 0.995 | 11.7
| RO | CS60 * CF * Me | 83 | 2.3 | B | 0.993 | 12.2
| RO | CS55 * Me5 | 86 | 2.3 | B | 0.994 | 12.0
| RO | CS | 89 | 1.9 | A | 良 | 0.995 | 11.7
| RO | CS | 89 | 2.7 | B | 酸化 | 0.996 | 11.5
| RO | CS | 90 | 2.2 | B | 0.994 | 12.6
| RO | Me | 90 | 2.1 | B | 0.996 | 12.6
| RO | Me | 91 | 2.2 | B | 0.993 | 11.4
| RO | CF | 91 | 2.1 | B | 0.994 | 12.3
| P | K * MA * SB | 88 | 3.4 | C | 酸化 | 1.000 | 12.7
| P | MA | 91 | 2.5 | B | 1.003 | 10.8
| P | BQ * MA | 92 | 3.1 | C | 色落色 | 0.997 | 12.3
| P | K * Me * CS * | 92 | 3.0 | C | 酸化、エタノール | 1.000 | 12.5
| F | フランズ | 92 | 2.5 | B | 1.072 | 4.6
| F | K | 91 | 2.9 | B | 1.020 | 5.7
<table>
<thead>
<tr>
<th>Ex.</th>
<th>PH</th>
<th>T-A</th>
<th>F- SO₄</th>
<th>T- SO₄</th>
<th>OD</th>
<th>OD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>g/dl</td>
<td>g/L</td>
<td>mg/L</td>
<td>mg/L</td>
<td>430nm</td>
<td>530nm</td>
</tr>
<tr>
<td>5.5</td>
<td>3.10</td>
<td>7.1</td>
<td>53</td>
<td>144</td>
<td>0.022</td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td>3.12</td>
<td>5.8</td>
<td>59</td>
<td>162</td>
<td>0.027</td>
<td>0.6</td>
</tr>
<tr>
<td>5.5</td>
<td>3.25</td>
<td>6.1</td>
<td>30</td>
<td>190</td>
<td>0.064</td>
<td>1.9</td>
</tr>
<tr>
<td>6.2</td>
<td>3.05</td>
<td>6.0</td>
<td>31</td>
<td>197</td>
<td>0.043</td>
<td>1.5</td>
</tr>
<tr>
<td>2.9</td>
<td>3.21</td>
<td>7.0</td>
<td>35</td>
<td>85</td>
<td>0.032</td>
<td>2.5</td>
</tr>
<tr>
<td>3.5</td>
<td>3.43</td>
<td>7.1</td>
<td>19</td>
<td>99</td>
<td>0.047</td>
<td>0.8</td>
</tr>
<tr>
<td>4.6</td>
<td>3.75</td>
<td>6.1</td>
<td>58</td>
<td>121</td>
<td>0.085</td>
<td>0.7</td>
</tr>
<tr>
<td>6.8</td>
<td>3.95</td>
<td>8.0</td>
<td>46</td>
<td>168</td>
<td>0.096</td>
<td>1.0</td>
</tr>
<tr>
<td>5.9</td>
<td>3.26</td>
<td>8.3</td>
<td>25</td>
<td>117</td>
<td>0.043</td>
<td>2.1</td>
</tr>
<tr>
<td>4.9</td>
<td>3.37</td>
<td>5.2</td>
<td>8</td>
<td>154</td>
<td>0.046</td>
<td>2.9</td>
</tr>
<tr>
<td>2.9</td>
<td>3.12</td>
<td>6.7</td>
<td>20</td>
<td>240</td>
<td>0.049</td>
<td>1.9</td>
</tr>
<tr>
<td>1.5</td>
<td>3.39</td>
<td>6.3</td>
<td>64</td>
<td>121</td>
<td>0.077</td>
<td>1.7</td>
</tr>
<tr>
<td>2.8</td>
<td>3.08</td>
<td>5.7</td>
<td>13</td>
<td>61</td>
<td>0.034</td>
<td>0.7</td>
</tr>
<tr>
<td>4.1</td>
<td>3.29</td>
<td>7.7</td>
<td>43</td>
<td>196</td>
<td>0.076</td>
<td>1.8</td>
</tr>
<tr>
<td>2.1</td>
<td>3.54</td>
<td>5.5</td>
<td>35</td>
<td>139</td>
<td>0.070</td>
<td>0.9</td>
</tr>
<tr>
<td>2.4</td>
<td>3.45</td>
<td>7.0</td>
<td>35</td>
<td>133</td>
<td>0.060</td>
<td>2.1</td>
</tr>
<tr>
<td>2.8</td>
<td>3.57</td>
<td>7.8</td>
<td>45</td>
<td>244</td>
<td>0.080</td>
<td>1.5</td>
</tr>
<tr>
<td>2.2</td>
<td>3.20</td>
<td>4.9</td>
<td>18</td>
<td>165</td>
<td>0.085</td>
<td>2.9</td>
</tr>
<tr>
<td>1.5</td>
<td>3.37</td>
<td>5.0</td>
<td>24</td>
<td>127</td>
<td>0.033</td>
<td>0.4</td>
</tr>
<tr>
<td>3.5</td>
<td>3.43</td>
<td>8.5</td>
<td>32</td>
<td>123</td>
<td>0.281</td>
<td>2.4</td>
</tr>
<tr>
<td>3.8</td>
<td>3.83</td>
<td>6.1</td>
<td>18</td>
<td>39</td>
<td>0.279</td>
<td>1.5</td>
</tr>
<tr>
<td>2.7</td>
<td>3.71</td>
<td>5.7</td>
<td>16</td>
<td>48</td>
<td>0.227</td>
<td>1.1</td>
</tr>
<tr>
<td>2.4</td>
<td>3.84</td>
<td>4.9</td>
<td>26</td>
<td>67</td>
<td>0.323</td>
<td>2.2</td>
</tr>
<tr>
<td>3.5</td>
<td>3.29</td>
<td>6.3</td>
<td>35</td>
<td>96</td>
<td>0.530</td>
<td>1.5</td>
</tr>
<tr>
<td>3.1</td>
<td>3.35</td>
<td>6.7</td>
<td>31</td>
<td>126</td>
<td>0.449</td>
<td>3.6</td>
</tr>
<tr>
<td>3.1</td>
<td>3.03</td>
<td>9.4</td>
<td>22</td>
<td>108</td>
<td>0.297</td>
<td>1.4</td>
</tr>
<tr>
<td>3.3</td>
<td>3.32</td>
<td>7.4</td>
<td>15</td>
<td>106</td>
<td>0.279</td>
<td>2.8</td>
</tr>
<tr>
<td>2.6</td>
<td>3.69</td>
<td>8.3</td>
<td>14</td>
<td>110</td>
<td>0.418</td>
<td>4.7</td>
</tr>
<tr>
<td>2.4</td>
<td>3.30</td>
<td>5.5</td>
<td>30</td>
<td>100</td>
<td>0.379</td>
<td>0.9</td>
</tr>
<tr>
<td>2.7</td>
<td>3.60</td>
<td>5.1</td>
<td>37</td>
<td>117</td>
<td>0.328</td>
<td>1.9</td>
</tr>
<tr>
<td>2.9</td>
<td>3.55</td>
<td>5.1</td>
<td>8</td>
<td>128</td>
<td>0.393</td>
<td>3.7</td>
</tr>
<tr>
<td>2.4</td>
<td>3.67</td>
<td>5.2</td>
<td>25</td>
<td>81</td>
<td>0.585</td>
<td>3.6</td>
</tr>
<tr>
<td>2.7</td>
<td>3.70</td>
<td>4.3</td>
<td>2</td>
<td>30</td>
<td>0.710</td>
<td>4.9</td>
</tr>
<tr>
<td>2.8</td>
<td>3.60</td>
<td>5.1</td>
<td>20</td>
<td>150</td>
<td>0.611</td>
<td>5.9</td>
</tr>
<tr>
<td>2.8</td>
<td>3.54</td>
<td>5.8</td>
<td>5</td>
<td>75</td>
<td>0.746</td>
<td>2.1</td>
</tr>
<tr>
<td>2.7</td>
<td>3.75</td>
<td>5.8</td>
<td>31</td>
<td>82</td>
<td>0.566</td>
<td>1.7</td>
</tr>
<tr>
<td>2.9</td>
<td>3.89</td>
<td>4.7</td>
<td>18</td>
<td>88</td>
<td>0.676</td>
<td>0.4</td>
</tr>
<tr>
<td>3.0</td>
<td>3.60</td>
<td>6.5</td>
<td>3</td>
<td>101</td>
<td>0.533</td>
<td>5.5</td>
</tr>
<tr>
<td>2.6</td>
<td>3.70</td>
<td>5.5</td>
<td>23</td>
<td>139</td>
<td>0.046</td>
<td>0.6</td>
</tr>
<tr>
<td>3.4</td>
<td>3.77</td>
<td>5.5</td>
<td>39</td>
<td>73</td>
<td>0.679</td>
<td>1.7</td>
</tr>
<tr>
<td>2.3</td>
<td>3.67</td>
<td>5.1</td>
<td>39</td>
<td>200</td>
<td>0.549</td>
<td>2.0</td>
</tr>
<tr>
<td>2.8</td>
<td>3.78</td>
<td>6.0</td>
<td>35</td>
<td>140</td>
<td>0.440</td>
<td>1.7</td>
</tr>
<tr>
<td>4.4</td>
<td>3.22</td>
<td>4.2</td>
<td>8</td>
<td>171</td>
<td>0.194</td>
<td>2.2</td>
</tr>
<tr>
<td>4.7</td>
<td>3.71</td>
<td>5.7</td>
<td>34</td>
<td>141</td>
<td>0.262</td>
<td>1.6</td>
</tr>
<tr>
<td>3.5</td>
<td>3.33</td>
<td>9.2</td>
<td>22</td>
<td>86</td>
<td>0.693</td>
<td>1.3</td>
</tr>
<tr>
<td>4.4</td>
<td>3.51</td>
<td>4.3</td>
<td>32</td>
<td>104</td>
<td>0.125</td>
<td>1.1</td>
</tr>
<tr>
<td>20.8</td>
<td>3.39</td>
<td>8.3</td>
<td>8</td>
<td>214</td>
<td>0.333</td>
<td>1.1</td>
</tr>
<tr>
<td>7.2</td>
<td>3.26</td>
<td>5.5</td>
<td>20</td>
<td>88</td>
<td>0.026</td>
<td>1.5</td>
</tr>
</tbody>
</table>

- 115 -