令和元年度果樹試験場明野圃場のブドウを用いた試験醸造および成分分析

小松正和·佐藤憲亮·恩田匠 渡辺晃樹*1·向山佳代*1·齋藤浩*2

Component Analyses of Wines and Grapes Cultivated in Akeno Vinyards of Yamanashi Pref. Fruit Tree Experiment Station in 2019

Masakazu KOMATSU, Kensuke SATO, Takumi ONDA, Koki WATANABE*1, Kayo MUKOUYAMA*1 and Hiroshi SAITO*2

要 約

令和元年度における, 県果樹試験場明野圃場で試験栽培された 6 品種 25 試験区の醸造用ブドウを用いて, 果汁の成分分析, 小規模試験醸造 (3 品種 13 試験区) および製成ワインの成分分析を実施し, ブドウ品種や栽培条件の違いによる成分値の違いについて検討した. また, 平成 30 年度のワインの官能評価結果を報告した.

1. 緒 言

山梨県は日本を代表するワイン産地であり、80 社を超えるワイナリーが多様なワインを生産している. しかし近年,安価な海外ワインや他産地との競争が激しくなってきたことから,さらなるワインの高品質化が求められている.

本県では「ワイン産地確立推進計画」を策定し、産学官が連携して、県産ブドウおよびワインの高品質化を目指した試験研究を実施してきた. 我々は、本事業に基づき、県果樹試験場と連携し、甲州および欧州系ブドウの栽培条件とワイン品質の関係を解析している 1)-8). 本分析の目的は、台木および整枝剪定方法が製成ワインの成分に及ぼす影響について考察し、高品質な県産ワインの醸成に資するデータを得ることにある.

本報では、令和元年年度における県果樹試験場の明野 圃場で試験栽培された 6 品種 25 試験区から得られた醸 造用ブドウを使用した果汁分析、試験醸造および製成ワ インの成分分析結果を報告する.

2. 実験方法

2-1 試験区

令和元年度に供試したブドウを表 1 に示した. 既報 1)-8) のとおり, ぶどう 5 品種と台木 3 種類の組み合わせからなる 13 試験区の台木試験と, ブドウ 3 品種と整枝

剪定方法 4 種類の組み合わせからなる 12 試験区の整枝 剪定試験が設定されている.

今年度の小規模試験醸造は,25 試験区のうち,台木 試験を中心に,●印で示した13 試験区に対し実施した (表1).

なお、試験樹は全て12年生であった.

2-2 収穫基準

各試験区の収穫日は、果樹試験場で実施した週ごとの 果実調査 (糖度,総酸,pH)の結果を目安に設定した. すなわち、糖度はできる限り高く、総酸が 8~10 g/L, CS, Me, HN, BN では pH3.5 未満とし、天候やブドウ の病害虫状況を判断材料に加えて決定した.

2-3 果汁の調製

既報 8) に従った.

2-4 果汁の成分分析

果汁について、糖度(屈折計示度),比重、総酸(酒石酸換算),pH,有機酸含有量(クエン酸、酒石酸,リンゴ酸),資化性窒素含有量(ホルモール態窒素),遊離アミノ酸含有量(生体41種類),無機質含有量(9元素)の分析を実施した.分析方法は、既報8)に従った.なお、無機質の分析装置を変更した(ICP-OES 5110,アジレント製).

^{*1} 山梨県果樹試験場

^{*2} 山梨県ワイン酒造組合

表1 令和元年度の試験区

試 験 区	略号	試験 醸造
<基本試験区(6品種25区)>		
台木試験		
カベルネ S×グロワール	CSGr	•
カベルネ S×101-14	CS101	•
カベルネ S×3309	CS3309	•
メルロ×グロワール	MeGr	•
メルロ×101-14	Me101	•
メルロ×3309	Me3309	•
甲州×グロワール	KOGr	•
甲州×101-14	KO101	•
甲州×3309	KO3309	•
ビジュノワール×グロワール	BNGr	
ビジュノワール×101-14	BN101	
アルモノワール×グロワール	HNGr	
アルモノワール×101-14	HN101	
整枝剪定試験		
カベルネ S -ギョ	CS-Gy	•
カベルネ S -コルドン	CS-Cn	•
カベルネ S -棚短梢	CS-TS	•
カベルネ S -棚長梢	CS-TL	•
甲州 -ギョ	KO-Gy	
甲州-コルドン	KO-Cn	
甲州-棚短梢	KO-TS	
甲州-棚長梢	KO-TL	
シャルドネ -ギョ	Ch-Gy	
シャルドネ -コルドン	Ch-Cn	
シャルドネ -棚短梢	Ch-TS	
シャルドネ -棚長梢	Ch-TL	

全試験区について果汁分析を実施した. 小規模試験醸造を実施した試験区は, 試験醸造欄の●で示した. カベルネ S: カベルネ・ソーヴィニヨン

2-5 小規模試験醸造

小規模試験醸造は、赤ワイン品種 (CS, Me) , 白ワイン用品種 (KO) ともに既報 8 に従い、同一条件となるように実施し、製成ワインを得た.

2-6 製成ワインの成分分析

製成ワインについて、比重、アルコール(容量%)、 エキス、総酸(酒石酸換算)、pH、有機酸含有量(クエン酸、酒石酸、リンゴ酸、コハク酸、乳酸、酢酸)、 遊離アミノ酸含有量(生体 41 種類)、総フェノール含 有量(没食子換算)、吸光度(430nm、530nm;赤ワインのみ 5 倍希釈)、色調(透過光;L*、a*、b*表色系)の定量を実施した。分析方法は、既報 8)に従った。

2-7 平成30年度産ワイン8の官能評価試験

平成 30 年度産ワインについて,令和元年 6 月 5 日に,ワイン関係者 27 名をパネルとして,7 項目 5 段階の官能評価試験を行った.評価においては,ブドウ品種以外の情報を伏せたブラインド方式とした.評価項目は,

「色調」, 「香り」, 「味」, 「総合」, 「青臭さ」, 「酸味」, 「硫黄臭」とした(「青臭さ」, 「酸味」, 「硫黄臭」は赤ワインのみ). 評価基準は, 「色調」~「総合」は, 1(悪い)~3(普通)~5(良い)の5段階, 「青臭さ」~「硫黄臭」は1(弱い)~3(普通)~5(強い)の5段階とした.

3. 結果

3-1 果汁の成分分析結果

表 2 に、令和元年度の果汁分析結果を示した. 収穫日は、9 月 19 日~10 月 29 日であった.

台木試験において、KO では、糖度の高さが、3309 > 101-14 > グロワールの順となったが、総酸、pH、資化性窒素には大差はみられなかった.赤系品種(CS、Me、BN、HN)では、総酸の高さが、101-14 > 3309 > グロワールの順となったが、糖度および pH には大きな差異はみられなかった.資化性窒素含有量は、品種によらず101-14 が低い傾向がみられた.アミノ酸や無機質の組成は、台木よりも品種による差異が大きかった.

整枝剪定試験において、Chでは、収穫日を約20日間遅く設定する程度の大きな差異がみられた。KOでは、コルドンで糖度が低く、総酸が高かった。資化性窒素は、垣根仕立てが棚仕立てよりも高い傾向を示した。アミノ酸は、整枝剪定方法よりも品種による差異が大きかった。無機質は、一部の元素において、仕立て方による差異が認められた。

また、表 3 に、平成 23~令和元年度 ¹⁾⁻⁸⁾ における、 果汁の糖度、総酸、pH、資化性窒素含有量について、 品種および年度ごとの平均値を示した。令和元年度は、 過去と比較すると晩生品種で特殊な年となった。 KO で は、糖度および総酸が 9 年間で最も低かった。 CS では、 糖度がやや低く、総酸が高めとなった。 資化性窒素含有 量は、すべての品種で、平年より高かった。

3-2 製成ワインの成分分析結果

表4に、令和元年度の製成ワイン分析結果を示した. すべての試験区で健全な発酵により想定どおりのワイン が製成できた. CSおよびMeでは、次の試験区において 成分値に差異がみられた. グロワールおよび棚長梢で、 pHおよびカリウム含有量が低かった. 一方、3309および 棚長梢で、総フェノール含有量が低く、L*値が高く、外 観上の色調は薄かった.

3-4 台木および整枝剪定が果汁の成分に及ぼす影響 (平成 24~令和元年度)

表 5 に、平成 24~令和元年度 ²⁾⁻⁸⁾ における、KO の整 枝剪定試験区ごとの資化性窒素含有量の結果を示した. 資化性窒素含有量の平均値は、ギヨ 135 mg/L、コルド ン132 mg/L,棚短梢105 mg/L,棚長梢98 mg/L であった.年度平均値で除し年度間較差の影響を排除すると,ギョ114 %,コルドン110 %,棚短梢91 %,棚長梢86 %となり,垣根仕立てのギョとコルドンが,棚仕立ての短梢,長梢と比較して資化性窒素含有量が高い傾向が今年度も継続して認められた.

3-5 台木および整枝剪定が製成ワインの成分に及ぼす影響 (平成 24~令和元年度)

表 6 に、平成 24~令和元年度 ²⁾⁻⁸⁾ における、CS の整 枝剪定試験区ごとの製成ワインの総フェノール含有量を 示した. 総フェノール含有量の平均値は、棚長梢におい て 2000 mg/L と最も高く, 次いで棚短梢 1968 mg/L, ギ ョ 1908 mg/L, コルドン 1882 mg/L であった. 年度平均 値で除し年度間較差の影響を排除すると、ギョ 99 %, コルドン 97 %, 棚短梢 102 %, 棚長梢 102 % となり, 棚仕立てが、垣根仕立てと比較して総フェノール含有量 が高い傾向が認められた. しかしながら, 最近はこの傾 向に変化がみられており、試験区間の差異は年々縮小す る傾向にある.総フェノール総フェノール含有量は、赤 ワインの品質を決める重要な成分であり, 要因の解析を 進める必要がある. 年度平均値も乱高下しており, 気象 条件による影響が比較的大きい可能性も考えられる. 引 き続きデータを蓄積し、年次変動を考察しながら要因の 解析を進めたい.

表3 平成23~令和元年度の果汁分析値 (品種ごとの平均値)

年度	H23	H24	H25	H26	H27	H28	H29	H30	R1					
品種					度(°Briz			1100						
CS	19.2	21.5	21.1	21.6	24.1	18.4	20.1	19.6	19.4					
Me	20.1	20.9	19.4	21.2	21.2	16.9	21.0	18.5	20.3					
HN	18.9	20.1	19.9	-	20.6	18.1	20.3	17.8	19.6					
BN	18.9	20.8	19.3	20.6	19.8	19.0	21.4	18.7	20.9					
KO	16.8	17.6	17.6	17.0	17.1	15.3	15.3	15.1	14.8					
Ch	19.7	21.3	19.7	21.0	19.8	19.2	22.0	18.7	21.3					
		総酸(g/L)												
CS	9.6	8.5	8.1	14.4	13.8	10.8	12.5	10.8	12.5					
Me	7.4	7.2	7.3	7.1	8.7	9.3	8.1	7.7	7.4					
HN	6.0	7.7	7.2	-	9.2	7.7	7.8	8.0	6.8					
BN	6.0	5.5	6.4	7.5	8.0	7.4	6.9	7.7	7.4					
KO	10.7	9.5	8.9	10.5	10.4	9.3	9.1	9.1	8.8					
Ch	8.1	7.8	7.4	9.8	8.5	8.8	8.1	8.2	8.2					
					pН									
CS	3.29	3.35	3.41	2.99	3.12	3.07	2.75	3.26	3.22					
Me	3.49	3.37	3.42	3.30	3.35	3.22	3.10	3.40	3.42					
HN	3.41	3.28	3.32	-	3.13	3.19	3.05	3.31	3.41					
BN	3.41	3.48	3.36	3.28	3.31	3.28	3.24	3.42	3.47					
KO	2.95	2.96	3.19	2.98	3.04	2.98	2.73	3.09	3.06					
Ch	3.28	3.28	3.37	3.24	3.28	3.14	3.10	3.33	3.33					
				資化	性窒素(m	g/L)								
CS	126	85	71	155	177	110	93	112	153					
Me	125	147	97	162	159	146	124	139	154					
HN	140	119	147	-	229	155	207	189	182					
BN	140	139	143	226	237	213	235	201	250					
KO	101	90	98	137	189	124	89	151	148					
Ch	151	129	124	180	177	157	147	140	211					

HN の平成 26 年度はデータなし

表 2 果汁分析結果

		糖度		総酸		クエン酸	酒石酸	リンゴ酸		窒素	総アミノ	資化性A	プロリン
試験区	収穫日	(Brix)	比重	(g/L)	pН	(g/L)	(g/L)	(g/L)	M/T比	(mg/L)	(mg/L)	(mg/L)	(mg/L)
CSGr	R1.10.29	19.3	1.084	11.1	3.29	0.5	4.7	5.7	1.2	160	1338	654	676
CS101	R1.10.29	19.4	1.086	13.1	3.17	0.5	5.0	6.4	1.3	169	1197	559	632
CS3309	R1.10.29	19.3	1.082	12.4	3.23	0.5	4.6	6.6	1.4	188	1369	645	718
MeGr	R1.10.2	20.5	1.085	7.1	3.40	0.2	5.3	2.3	0.4	170	1518	820	693
Me101	R1.10.2	20.0	1.084	7.6	3.41	0.2	3.8	2.5	0.7	141	1363	814	543
Me3309	R1.10.2	20.5	1.085	7.5	3.45	0.2	3.6	2.6	0.7	150	1760	1105	648
BNGr	R1.10.2	21.0	1.090	7.2	3.49	0.2	4.3	3.9	0.9	268	2133	1657	472
BN101	R1.10.2	20.8	1.089	7.6	3.44	0.3	4.8	2.4	0.5	232	1957	1518	437
HNGr	R1.10.17	19.6	1.087	6.8	3.42	0.4	6.0	3.1	0.5	194	2083	1062	1015
HN101	R1.10.17	19.6	1.087	6.8	3.40	0.3	5.7	2.9	0.5	170	1875	933	937
KOGr	R1.10.17	14.6	1.064	9.0	3.07	0.3	7.2	3.5	0.5	166	1334	882	447
KO101	R1.10.17	14.9	1.065	9.1	3.06	0.3	7.2	3.6	0.5	159	1226	821	401
KO3309	R1.10.17	15.6	1.068	9.1	3.07	0.3	7.2	3.6	0.5	162	1481	973	503
CS-Gy	R1.10.29	19.5	1.083	11.9	3.24	0.5	4.6	6.1	1.3	120	1378	581	791
CS-Cn	R1.10.29	19.5	1.083	12.5	3.20	0.5	5.0	6.1	1.2	137	1206	539	661
CS-TS	R1.10.29	19.3	1.082	13.3	3.19	0.6	5.4	7.5	1.4	151	1097	496	595
CS-TL	R1.10.29	19.4	1.083	13.1	3.18	0.6	5.6	7.3	1.3	126	1148	545	597
KO-Gy	R1.10.17	14.8	1.065	8.4	3.08	0.3	7.1	3.2	0.5	147	1222	766	453
KO-Cn	R1.10.17	12.5	1.058	9.3	3.04	0.3	7.6	3.7	0.5	142	996	651	342
KO-TS	R1.10.17	16.4	1.065	8.8	3.03	0.4	6.5	3.9	0.6	129	1085	619	462
KO-TL	R1.10.17	14.8	1.071	8.2	3.08	0.3	6.5	3.5	0.5	118	1167	549	611
Ch-Gy	R1.10.2	22.7	1.094	7.8	3.36	0.2	5.0	2.9	0.6	204	2851	1313	1525
Ch-Cn	R1.10.2	22.4	1.092	8.0	3.36	0.2	5.4	3.0	0.6	197	2143	1007	1125
Ch-TS	R1.10.10	21.2	1.089	8.9	3.33	0.4	6.5	4.7	0.7	231	3168	1533	1620
Ch-TL	R1.9.19	19.0	1.080	8.3	3.27	0.3	6.3	4.4	0.7	210	2359	1362	987

試験区	アルギニン	アラニン	グルタミン酸	グルタミン	K	Ca	Mg	Cu	Fe	Zn	Mn	P	Si
四颗 区	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
CSGr	134	86	111	24	2178	93	66	5.6	4.5	2.6	7.1	129	15
CS101	120	79	95	20	2209	88	69	5.4	5.2	2.8	6.8	137	18
CS3309	164	87	93	22	2187	85	67	6.5	6.1	2.5	6.4	143	20
MeGr	192	144	83	19	1913	47	46	0.0	1.3	1.1	1.4	117	7
Me101	171	159	130	21	1966	83	59	0.0	3.7	3.9	10.3	128	14
Me3309	221	209	155	28	2148	80	59	0.1	4.9	3.6	10.3	134	16
BNGr	623	230	112	98	1934	53	61	0.0	1.3	0.9	1.5	107	8
BN101	521	226	120	77	1920	46	64	0.0	1.9	1.1	2.0	116	10
HNGr	269	183	121	51	1941	36	56	0.0	1.5	1.0	1.7	107	7
HN101	206	177	121	46	1871	36	56	0.0	1.3	1.0	1.5	112	8
KOGr	298	133	81	107	1121	101	62	0.3	0.8	0.9	1.3	83	5
KO101	285	125	79	95	1192	91	71	0.2	0.8	1.0	1.4	95	6
KO3309	331	153	92	117	1168	91	70	0.2	0.8	0.9	1.3	96	6
CS-Gy	124	78	105	20	2278	93	72	5.6	6.2	3.0	7.4	153	26
CS-Cn	120	71	95	20	2283	102	75	7.1	6.8	3.4	9.4	163	27
CS-TS	107	71	82	18	2107	135	67	32.8	3.7	1.5	3.2	148	20
CS-TL	116	78	86	20	1958	154	67	42.3	2.8	1.6	4.5	118	18
KO-Gy	255	109	57	93	1216	87	73	1.3	1.3	2.2	0.8	117	9
KO-Cn	248	83	50	61	1212	93	72	1.5	0.9	1.0	0.8	113	9
KO-TS	211	93	36	36	1087	73	57	4.6	0.5	0.6	0.5	94	7
KO-TL	167	82	42	31	1186	70	57	4.4	1.1	0.7	1.0	88	6
Ch-Gy	147	235	87	122	2076	46	71	0.0	1.3	0.9	1.7	164	16
Ch-Cn	132	187	84	87	2101	48	67	0.0	1.6	1.0	1.9	149	16
Ch-TS	204	302	106	153	1912	47	59	0.0	0.9	0.8	0.9	135	11
Ch-TL	172	293	76	154	1519	64	60	0.0	0.7	0.9	0.8	107	10
		※総酸∶酒石	竣換算,T/A比:	酒石酸÷リンゴ酮	後,窒素:ホルモ	一ル態窒素、終	アミノ:アミノ酸	総量,資化性A	:アミノ酸総量か	らプロリン(Pro)	を減じたもの.		

表 4 製成ワイン分析結果

試験区	比重	アルコール	エキス	総酸	рН	クエン酸	酒石酸	リンゴ酸	コハク酸	乳酸	酢酸
政 教区	儿里	(%)	(g/100mL)	(g/L)	рп	(g/L)	(g/L)	(g/L)	(g/L)	(g/L)	(g/L)
CSGr	0.993	12.2	2.46	6.4	3.60	0.1	1.6	0.1	1.3	2.8	0.4
CS101	0.993	11.8	2.53	6.4	3.73	0.0	1.4	0.1	1.3	3.6	0.6
CS3309	0.993	12.1	2.61	6.5	3.75	0.0	1.8	0.1	1.3	3.5	0.6
MeGr	0.992	12.4	2.38	6.3	3.49	0.0	2.8	0.0	1.1	1.6	0.5
Me101	0.992	12.0	2.31	6.0	3.60	0.0	2.2	0.0	1.2	1.9	0.5
Me3309	0.992	12.3	2.28	5.9	3.64	0.0	1.9	0.0	1.2	2.0	0.5
KOGr	0.991	12.3	2.02	8.7	3.13	0.3	4.1	2.5	0.5	0.2	0.2
KO101	0.991	12.4	2.01	8.6	3.14	0.3	3.9	2.6	0.6	0.2	0.2
KO3309	0.991	12.3	2.02	8.7	3.15	0.3	3.9	2.6	0.5	0.2	0.2
CS-Gy	0.994	12.2	2.68	6.9	3.71	0.1	1.7	0.1	1.4	3.5	0.4
CS-Cn	0.993	12.4	2.58	6.7	3.66	0.0	1.5	0.1	1.5	3.4	0.5
CS-TS	0.993	12.3	2.54	6.8	3.68	0.0	1.3	0.1	1.4	3.7	0.6
CS-TL	0.992	12.3	2.41	6.8	3.59	0.0	1.5	0.1	1.4	3.5	0.6
	K	Ca	Cu	Fe	Si	総フェノール	吸光	£度			

試験区	K	Ca	Cu	Fe	Si	総フェノール	吸)	光度	L*	*	b*
政策区	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	430nm	530nm	L	a	D
CSGr	873	100	0.1	0.8	8	1326	0.374	0.524	32	62	37
CS101	1119	93	0.1	1.0	10	1373	0.407	0.541	29	60	36
CS3309	1176	91	0.0	0.9	11	1214	0.395	0.540	30	60	35
MeGr	770	79	0.1	0.8	7	1216	0.302	0.454	37	64	33
Me101	882	76	0.1	1.0	9	1063	0.262	0.347	43	60	30
Me3309	866	73	0.0	0.8	9	1004	0.243	0.308	45	57	29
KOGr	444	74	0.0	0.6	5	238	0.029	0.006	100	-1	3
KO101	435	84	0.0	0.6	6	261	0.028	0.005	100	-1	3
KO3309	438	82	0.0	0.6	6	237	0.027	0.005	100	-1	3
CS-Gy	1187	92	0.0	0.8	17	1296	0.489	0.732	25	59	38
CS-Cn	1053	92	0.1	0.8	17	1309	0.470	0.667	26	59	38
CS-TS	1031	108	0.0	0.7	12	1311	0.347	0.424	36	59	36
CS-TL	874	109	0.0	0.7	12	1163	0.311	0.399	38	60	33

※0.0: 不検出, 総酸: 酒石酸換算, 総フェノール: 没食子酸換算, 吸光度: 赤ワインは5倍希釈, L*a*b*: すべて希釈せずに測定.

表 5 甲州における整枝剪定の違いによる果汁の 資化性窒素含有量(平成24~令和元年度)

年度	H24	H25	H26	H27	H28	H29	H30	R1	平均	標準
試験区				資化性	窒素含	有量 (mg/	L)			偏差
KO-Gy	98	108	130	195	137	96	168	147	135	33
KO-Cn	73	112	132	200	120	88	191	142	132	42
KO-TS	105	84	99	130	99	80	116	129	105	17
KO-TL	84	92	119	100	109	82	81	118	98	15
年度平均	90	99	120	156	116	86	139	134	117	23
試験区		資化性質	素含有	量÷資化	比性窒素	含有量年	度平均	直×100	(%)	
KO-Gy	109	109	108	125	118	111	121	110	114	6
KO-Cn	81	113	110	128	103	102	138	106	110	16
KO-TS	117	85	83	83	85	93	83	96	91	11
KO-TL	93	93	99	64	94	95	58	88	86	15

表 6 カベルネ・ソーヴィニョンにおける,整枝剪定 の違いによる製成ワインの総フェノール含有量 (平成24~令和元年度)

年度	H24	H25	H26	H27	H28	H29	H30	R1	平均	標準
試験区				絶フェ	ノール含	有量 (mg	/L)			傷差
CS-Gy	1377	2005	2692	2698	1904	1215	2072	1296	1908	549
CS-Cn	1348	1903	2675	2656	1908	1095	2164	1309	1882	564
CS-TS	1671	2033	2669	2945	1703	1336	2075	1311	1968	554
CS-TL	1668	2131	2838	2894	2129	1147	2031	1163	2000	620
年度平均	1516	2018	2719	2799	1911	1199	2086	1270	1940	565
試験区		総フェノ・	ール含有	量・総に	フェノール	含有量	年度平均	值×100	(%)	
CS-Gy	91	99	99	96	100	101	99	102	99	3
CS-Cn	89	94	98	95	100	91	104	103	97	5
CS-TS	110	101	98	105	89	111	100	103	102	7
CS-TL	110	106	104	103	111	96	97	92	102	7

3-6 平成30年度産ワインの官能評価結果

表7に、平成30年度の製成ワイン7の官能評価結果を、 表8に、各試験区間における評点の比較とt検定による有 意差の有無を示した.

全体として, 色調は平均的から良好, 香味は平均的な ワインと評価された. また赤ワインの青臭さ, 酸味, 硫 黄臭は全体的に弱めと評価された.

台木試験において,総合評価では有意差は認められな かったが、Meではグロワールが101-14よりも色調が良好 と評価された.

整枝剪定試験において、CSでは、垣根仕立て(Gy, C n) は、棚仕立て(TS, TL)よりも品質が高いと評価さ れた. 色調, 香り, 味, 総合のいずれの評価項目におい ても、有意差が認められた. KOにおいても、垣根仕立 ては、棚仕立てよりも品質が高いと評価された. 色調お よび香りの評価項目において有意差が認められた.

表7 平成30年度産ワインの官能評価試験結果

20	1 /3/~												
試験区	色襴	香り	味	総合	青臭さ	酸味	硫黄臭						
CSGr	3.6	3.0	3.1	3.0	2.0	2.1	0.9						
CS101	3.6	3.1	3.1	3.1	2.0	2.0	0.8						
MeGr	3.0	3.0	2.7	2.7	2.3	2.0	1.0						
Me101	2.7	2.7	2.6	2.6	2.1	1.9	1.0						
CS-Gy	4.0	3.4	3.3	3.4	1.7	2.0	0.7						
CS-Cn	3.9	3.3	3.4	3.3	1.7	1.9	0.8						
CS-TS	3.1	3.0	2.9	2.9	1.5	2.2	1.0						
CS-TL	2.9	2.9	2.8	2.8	1.7	2.0	0.9						
KO-Cn	4.1	3.4	3.4	3.6									
KO-TS	3.7	3.1	3.2	3.1									
KO-TL	3.8	3.0	3.1	3.0									

表 8 平成 30 年度産ワインの官能評価試験結果の解析

試験区A	試験区B	色育	香り	味	総合	青臭さ	酸味	硫黄臭
CSGr	CS101	A>B	A <b< td=""><td>A<b< td=""><td>A<b< td=""><td>A>B</td><td>A>B</td><td>A>B</td></b<></td></b<></td></b<>	A <b< td=""><td>A<b< td=""><td>A>B</td><td>A>B</td><td>A>B</td></b<></td></b<>	A <b< td=""><td>A>B</td><td>A>B</td><td>A>B</td></b<>	A>B	A>B	A>B
MeGr	Me101	A>B*	A>B	A>B	A>B	A>B	A>B	A>B
CS-Gy	CS-Cn	A>B	A>B	A <b< td=""><td>A>B</td><td>A>B</td><td>A>B</td><td>A<b< td=""></b<></td></b<>	A>B	A>B	A>B	A <b< td=""></b<>
CS-Gy	CS-TS	A>B***	A>B	A>B*	A>B**	A>B	A <b< td=""><td>A<b*< td=""></b*<></td></b<>	A <b*< td=""></b*<>
CS-Gy	CS-TL	A>B***	A>B*	A>B*	A>B**	A <b< td=""><td>A<b< td=""><td>A<b< td=""></b<></td></b<></td></b<>	A <b< td=""><td>A<b< td=""></b<></td></b<>	A <b< td=""></b<>
CS-Cn	CS-TS	A>B***	A>B	A>B***	A>B**	A>B	A <b*< td=""><td>A<b< td=""></b<></td></b*<>	A <b< td=""></b<>
CS-Cn	CS-TL	A>B***	A>B*	A>B**	A>B*	A <b< td=""><td>A<b< td=""><td>A<b< td=""></b<></td></b<></td></b<>	A <b< td=""><td>A<b< td=""></b<></td></b<>	A <b< td=""></b<>
CS-TS	CS-TL	A>B**	A>B	A>B	A>B	A <b< td=""><td>A>B</td><td>A>B</td></b<>	A>B	A>B
KO-Cn	KO-TS	A>B***	A>B	A>B	A>B*			
KO-Cn	KO-TL	A>B**	A>B*	A>B	A>B**			
KO-TS	KO-TL	A <b< td=""><td>A>B</td><td>A>B</td><td>A>B</td><td></td><td></td><td></td></b<>	A>B	A>B	A>B			

4. 考察

明野圃場で試験栽培された 6 品種 25 試験区のブドウ を用いて、果汁の成分分析、小規模試験醸造(3品種13 試験区)および製成ワインの成分分析を実施した.

令和元年度のブドウの収穫は、品種によって多少の前 後はあったが、平年並みからやや遅くなった。また、気 象条件等の影響により、晩生品種(KO, CS)では、糖 度の上昇や総酸の減少が不十分となったものと推察され

製成ワインにおいては、CS、Me の総フェノール含有 量は、平成30年度より低く、平成23年以降で比較する と平成29年度と同程度に低い年だと考えられた.

平成 23~令和元年度までの結果を総合すると、果汁 において、KO の資化性窒素含有量は、棚仕立てと比較 し、垣根仕立てで高くなる傾向が継続して認められた (表 5). KO においては、資化性窒素含有量の多い果 汁を使用すると、製成ワインのエステル類の生成が多く、 ワイン品質が向上する 9 ことが分かっている. 一方で, KO の垣根仕立ては収量が少なく、ギョは棚短梢の半量 5), 棚長梢の 1/3 程度 5) であることに留意が必要である. また、CS の垣根仕立ての製成ワインにおいて、垣根 仕立てと比較し,総フェノール含有量が高くなる傾向が 認められた. 一方で、最近はこの傾向に変化がみられて おり、要因解明のため、さらなるデータの蓄積が必要で あると考えられた. CS の棚長梢は収量が高い 5 が, 作 業時間は垣根仕立てが短いとされることに留意が必要で ある.

5. 結 言

- 1. 明野圃場で試験栽培された 6 品種 25 試験区のブド ウを用いて、果汁分析、小規模試験醸造(3 品種 13 試験区),製成ワインの成分分析を実施した.
- 2. 平成 24~令和元年度の結果として、甲州において、 垣根仕立ては、棚仕立てより、果汁の資化性窒素含 有量が高くなる傾向が認められた.
- 3. カベルネ・ソーヴィニヨンにおいて、棚仕立ては、

垣根仕立てより、製成ワインの総フェノール含有量 が高い傾向が認められた.

4. 平成 30 年度産ワインの官能評価結果から、全体として、色調は平均的から良好、香味は平均的なワインと評価された. 甲州およびカベルネ・ソーヴィニョンにおいて、垣根仕立ては、棚仕立てよりも品質が高いと評価された.

参考文献

- 1) 小松正和・恩田匠・中山忠博・三宅正則・齋藤浩 : 山梨県工業技術センター研究報告, No.26, pp.42-50 (2012)
- 2) 小松正和・恩田匠・中山忠博・渡辺晃樹・宮下隆 司・三宅正則・齋藤浩:山梨県工業技術センター 研究報告, No.27, pp.10-21 (2013)
- 3) 小松正和・恩田匠・中山忠博・渡辺晃樹・宮下隆 司・三宅正則・齋藤浩:山梨県工業技術センター 研究報告, No.28, pp.1-17 (2014)
- 4) 小松正和・恩田匠・中山忠博・渡辺晃樹・宮下隆 司・三宅正則・齋藤浩:山梨県工業技術センター 研究報告, No.29, pp.100-106 (2015)
- 5) 小松正和・恩田匠・中山忠博・渡辺晃樹・宮下隆 司・三宅正則・齋藤浩:山梨県工業技術センター 研究報告, No.30, pp.100-106 (2016)
- 6) 長沼孝多・小嶋匡人・恩田匠・渡辺晃樹・小池浩 ー・富田晃・齋藤浩:山梨県工業技術センター研 究報告, No.31, pp.27-34 (2017)
- 7) 長沼孝多・小嶋匡人・恩田匠・渡辺晃樹・小池浩 一・富田晃・齋藤浩:山梨県産業技術センター研 究報告, No.1, pp.154-159 (2018)
- 8) 小松正和・佐藤憲亮・恩田匠・渡辺晃樹・向山佳 代・齋藤浩:山梨県産業技術センター研究報告, No.2, pp.155-159 (2019)
- 9) 小松正和・飯野修一・中山忠博・原川守・上垣良信・猪俣雅人・齊藤典義・時友裕紀子・久本雅嗣・奥田徹・上野昇:山梨県工業技術センター研究報告, No.22, pp.154-171 (2008)