ウコギ(Acanthopanax spinosus)の増殖法

戸澤一宏

Consideration of condition about Multiply Acanthopanax spinosus

Kazuhiro TOZAWA

Summary: It reviewed about the part and the thickness of the branch to use for a putting-in ear about the propagation method by the quickset of Acanthopanax (Acanthopanax spinosus), the head-end to use and so on

As a result, as for the part to use for a putting-in ear, the diameter of the branch and the putting-in ear was proved last year and an enough thing was proved by being flooded about the Kanuma soil + promix, the head-end about equal to or more than 6 mm.

要旨:ウコギ(ヤマウコギ A canthopanax spinosus)の挿し木による増殖法について、挿し穂に用いる枝の部位・太さ、用いる用土、前処理等について検討した。この結果、挿し穂に用いる部位は昨年枝・挿し穂の径が $6 \, \mathrm{mm}$ 以上、用土は鹿沼土+プロミックス、前処理は浸水で十分であることが判明した。

1 はじめに

ヤマウコギやヒメウコギなどのをウコギ類は、独特の 苦みと、さわやかな香りがあり、山菜として人気が高待っ てきている。さらに、根皮は五加皮と呼ばれ、滋養強壮 効果のある薬草として知られている。しかし、ウコギは 東北地方の一部で栽培されているほかは、栽培が行われ ておらず、山取り以外の入手は難しいのが現状である。 そこで、人気の高いウコギの増殖法について検討を行い、 挿し木による増殖法について検討を行った。

2 試験方法

挿し穂に用いる枝に関する条件、用土・前処理について検討を行った。各々の条件について、成功率について比較検討し、苗生産のための最適条件について検討した。 挿し穂については、10 cm 前後、最低 2 個の休眠芽があるように調整した。また、挿し木後は温室内に置き、温 度・湿度・灌水などその他の条件については、同条件と なるようにした。用土の影響を調べるとき以外は鹿沼土 単用で試験を行った。

挿し木が成功した基準については、発根し、鉢上げ後 1ヶ月、枯死しなかったものとした。

2-1 挿し穂に関する検討

挿し穂に用いる枝の条件を Table-1,2 に示す。 Table-1では挿し穂の枝の太さが、成功率に及ぼす影響を調べた。また、Table-2では挿し穂の枝年齢が成功率に及ぼす影響について検討した。なお当年枝については試験時期が他のものと比べて3ヶ月ほど遅れて行った。

Table 1 Experimental Condition

No.		Diameter of Cutting		
No.	I	under 3mm		
No. No.	${ m II}$	3mm-6mm		
No.	Ш	over 6mm		

Table 2 Experimental Condition

No.		Condition
No.	Ι	This year
No.	Π	Last Year
No.	Ш	2Year
No.	IV	This year Last Year 2Year over 3year

2-2 挿し床の検討

挿し床に用いた用土を Table-3 に示す。赤玉土・鹿沼土・プロミックスを混ぜ、成功率に対する用土の影響について検討した。

Table 3 Experimental Condition

No.		Condition
No.	Ι	鹿沼土
No.	Π	赤玉土
No.	Ш	鹿沼土+プロミックス(10%Vol)
No.	IV	赤玉土+プロミックス(10%Vol)
No.	V	赤玉土 鹿沼土+プロミックス(10%Vol) 赤玉土+プロミックス(10%Vol) 赤玉土+鹿沼土+プロミックス(10%Vol)

2-3 挿し木に関する検討

挿し穂の前処理(浸水)条件を(Table-4)、および発 根促進剤の影響について検討した。

Table 4 Experimental Condition

No.		Condition
No.	I	Control
No.	П	水道水
No.	Ш	水道水+メネデール

3 結 果

3-1-1 挿し穂径の影響

Table-5に枯死率に対する挿し穂径の影響を示す。

Table 5 Result of Examination

No.	試験数(本)	成功(本)	枯死(本)	成功率(%)
I	85	38	47	44.7
Π	80	62	18	77.5
${\rm I\hspace{1em}I\hspace{1em}I}$	68	59	9	86.8

挿し穂の径に関しては直径 $5 \, \mathrm{mm}$ 以上の径で成功率 が高くなることが判明した。直径 $3 \, \mathrm{mm}$ 以下の径では、挿し木後 $2 \, \mathrm{週間程度}$ で芽がふくらみ、 $4 \sim 5 \, \mathrm{週間}$ で芽が 出るが、その後発根せずに枯死するものが多い。最終的 に苗として生産ができなくなる。

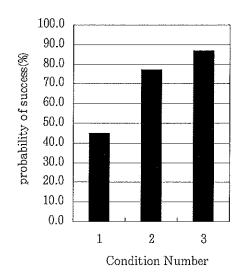


Fig. 1 Effect of diameter of Cutting on Propability of success

3-1-2 挿し穂の枝年齢の検討

Table-6に枯死率に対する枝年齢の影響を示す。

Table 6 Result of Examination

No.	試験数(本)	成功(本)	枯死(本)	成功率(%)
I	52	12	40	23.1
${ m II}$	62	54	8	87.1
Ш	56	42	14	75.0
IV	68	46	22	67.6

これによると、昨年枝の成功率が最も高く、当年枝の 成功率が低くなっている。当年枝は伸びたばかりの徒長 枝を用いたが、成功率は高くなかった。

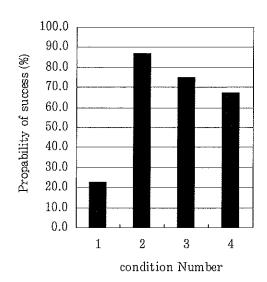


Fig. 2 Effect of age of cutting on Propability of success

3-2 用土の影響

成功率に対する用土の影響について検討した。Table-7に各条件に多する成功率を示す。

Table 7 Result of Examination

No.	試験数(本)	成功(本)	枯死(本)	成功率(%)
I	40	25	15	62.5
π	40	23	17	57.5
Ш	40	36	4	90.0
IV	40	31	9	77.5
V	40	32	8	0.08

用土としては、鹿沼土+プロミックス (10 % vol) がもっとも適していることがわかった。プロミックスを用いることにより、土壌中の水分が保てるため、成功率に影響したと考えられる。

他の用土についても、枯死率がさほど高くないため、 用土については、10%程度のプロミックスを加えるこ とにより十分な効率で苗を得ることができた。

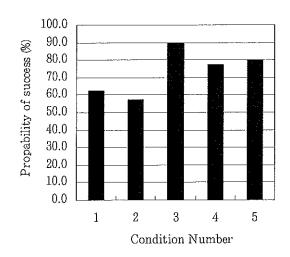


Fig. 3 Effect of Soil on Propability of success

3-3 前処理の影響(1)

挿し木の成功率に対する前処理の影響について検討した。調整後、すぐに挿し木をしたものと、水道水に浸水したもの、水道水に 0.2%のメネデールを入れたものに浸水させたもので比較した。

Table 8 Result of Examination

No.	試験数(本)	成功(本)	枯死(本)	成功率(%)
I	40	24	16	60.0
${f II}$	40	28	12	70.0
Ш	40	30	10	75.0

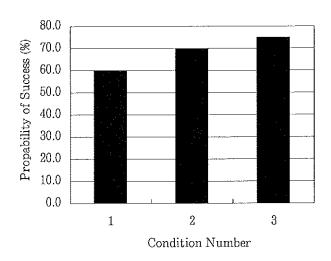


Fig. 4 Effect of previous treatment on Propability of success

3-3 前処理の影響(2)

Table-9 に挿し木の成功率に及ぼす発根剤の影響を調べた。今回の試験では発根剤に対する影響はあまりないと考えられる。

Table 9 Effect of NAA on Propability of success

No.	試験数(本)	成功(本)	枯死(本)	成功率(%)
Control	40	28	12	70.0
NAA	40	30	10	75.0

4 考 察

ウコギの挿し木に関する最適条件について検討したと ころ、以下の条件が最適であることが判明した。

- 1. 昨年枝の枝を用いる。
- 2. 5 mm 以上の径の枝を用いる。
- 3. 挿し床は、鹿沼土+プロミックス(10%Vol)
- 4. 前処理は水または水+0.5%のメネデール に一晩浸水する。