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1 1 

Preface 2 

 3 

Recreational fisheries are having a large impact on fish populations as well as 4 

commercial fishieries (e.g., Coleman et al. 2004; Grimm 2004; Lewin et al. 2006). The 5 

management of recreational fishing has received considerable attention (Lewin et al. 6 

2006). Arlinghaus et al. (2002) categorized the regulations for recreational fishing as 7 

technical measures (e.g., closed area, closed season, gear restrictions), input controls 8 

(access and effort control, e.g., examinations, licenses), and output controls (e.g., catch 9 

limit, size limit, catch and release). Among these regulations, catch and release is 10 

distinctive and complex. Catch and release fishing is a method for sustaining fishing 11 

resources via the release of caught fish (Fig. 1.1). The ultimate success of catch and 12 

release fishing hinges on ensuring high survival rates for released individuals by 13 

minimizing injury and mortality (Wydoski 1977; Bartholomew and Bohnsack 2005). 14 

However, caught fish suffer from substantial stress (e.g., hook punctures, fighting until 15 

landing, and handling). Because the destiny of caught and released fish is invisible, its 16 

effectiveness for sustaining fish resources is uncertain, even though all fishermen 17 

comply with the regulation. Thus, follow-up researches of caught and released fish are 18 

essential to evaluate the effectiveness. 19 

Initially catch and release fishing was mainly a by-product of regulations limiting 20 

the size, number, or species of fish that could be retained (Policansky 2002). Today, 21 

catch and release fishing is a well-established practice of recreational fishermen and a 22 
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useful option for fisheries management (e.g., Cooke and Suski 2005; Cooke and 1 

Schramm 2007). Cooke and Cowx (2004) estimated that 19 million tons of fish, 2 

representing over 30 billion individuals, are caught and released globally into 3 

recreational fisheries. This is equal to the amount of fish (17.9 – 39.5 million tons) that 4 

are discarded each year by commercial fisheries around the world (Alverson et al. 1994). 5 

Overall, it is estimated that approximately 60% of the fish caught by recreational 6 

fishermen in North America are released (Cooke and Wilde 2007). Catch and release 7 

fishing is becoming established in Japan. For example, more than 30 rivers in Japan 8 

have catch and release areas for salmonids (Tanaka 2003).  9 

Catch and release fishing is particularly applicable to oligotrophic and cold waters, 10 

where even moderate fishing effort can lead to exploitation that exceeds annual surplus 11 

production (Noble and Jones 1999). In moutain streams, where recreational fish 12 

populations are predominantly salmonids (Griffith 1999), water areas are small and 13 

fishing intensity tends to be very high (Cox and Walters 2002; Tsuboi and Endou 2008, 14 

see also Chapter 2 in this dissertation). Japanese mountain streams are habitats of 15 

stream-dwelling salmonids, white-spotted charr (Salvelinus leucomaenis), masu salmon 16 

(Oncorhynchus masou), and red-spotted masu salmon (O. masou ishikawae), which are 17 

usually non-anadromous and important resources for recreational fishing. These 18 

salmonids appear to be exposed high fishing intensity during juvenile to adult stage. 19 

Consequently, these salmonids are high priority for the study of evaluation of catch and 20 

release fishing for sustaining resources.  21 

To evaluate the effectiveness of catch and release fishing on stream-dwelling 22 

salmonids, firstly the exploitation rate should be assessed (i.e., the fraction of the fish in 23 

a population that is caught and removed during a particular effort). It is also important 24 
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to research the phenotypic characteristics concerning about the selectivity by 1 

recreational fishing. Here, “selectivity” was defined as the trend which specific 2 

individuals are easier to be caught. Then, caught and released fish should be followed 3 

up. It is important to assess the growth, survival and vulnerability to fishing after catch 4 

and release. Here, “vulnerability to fishing” was defined as the probability of being 5 

caught, which differs among individuals and may be altered by learning the hook 6 

through the experience(s) of caught and released.  7 

There have been numerous studies of the hooking mortality associated with 8 

various types of fishing equipment and in various species. One study found that the 9 

average hooking mortality for non-anadromous trout was 31.4 % with bait fishing 10 

(reviewed by Taylor and White 1992). Many studies of hooking mortality have 11 

indicated that the mortality of fish hooked in vital organs such as the esophagus or 12 

gills (i.e., deep-hooked fish) is very high for some species (reviewed by Taylor and 13 

White 1992; Muoneke and Childress 1994; Bartholomew and Bohnsack 2005). It has 14 

been suggested that cutting the fishing line rather than removing the hook can reduce 15 

the post-release mortality of deep-hooked fish (e.g., Mason and Hunt 1967; Schisler 16 

and Bergersen 1996; Schill 1996).  17 

Although the hooking mortalities of various species are well known, the study of 18 

growth and vulnerability to fishing after catch and release are rarely done and 19 

undeveloped. Siepker et al. (2006) observed decreased feeding by largemouth bass 20 

(Micropterus salmoides), subsequent to be caught and released, whereas fishing had 21 

no effect on the growth rates of rainbow trout (O. mykiss, Mason and Hunt 1967), 22 

white-spotted charr (Doi et al. 2004), and largemouth bass (Pope and Wilde 2004). 23 

The vulnerabilities of carp (Carprinus carpio) and rainbow trout were shown to 24 
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decrease after catch and release (Beukema 1970; Yoneyama et al. 1996), although 1 

catchable tilapia (Tilapia mossambica) were caught repeatedly (Yoneyama et al. 2 

1992).  3 

Almost all studies that have investigated hooking mortality, the fate of hooks left in 4 

released fish, and growth and vulnerability to fishing subsequent to release have been 5 

conducted in pens or artificial ponds (except for Schill et al. 1986; Schill 1996). Schill 6 

(1996) suggested that studies in lentic water (i.e., artificial ponds) with hatchery fish 7 

may not be useful for describing hooking mortality in natural streams. Since such an 8 

artificial habitat is vastly different from the natural environment (e.g., food, habitat 9 

density, predation pressure, substrate, water velocity), it is difficult to evaluate the 10 

effectiveness of catch and release. Hooking mortality might be overestimated in lentic 11 

water, where the incidence of deep hooking increases because it is hard to detect the bite 12 

of fish. Indeed, a study in a natural stream reported lower hooking mortality (16%) than 13 

that reported in most previous studies (mean = 25%) for rainbow trout (Schill 1996). 14 

Therefore, it is important to investigate the effects of catch and release fishing on fish in 15 

the natural environment, in order to evaluate its effectiveness for sustaining resources 16 

and to appropriately review previous studies. 17 

The reasonable approaches for evaluation of effectiveness of catch and release on 18 

stream-dwelling salmonids are fishing experiments in small mountain streams, where 19 

almost all fish can be identified. The four things should be evaluated, 1. the exploitation 20 

rate by single fisherman in various habitats to assess the impact of recreational fishing 21 

on stream-dwelling salmonids, 2. the growth, survival, and vulnerability to fishing after 22 

single catch and release experiment in several streams, 3. the phenotypic characteristics 23 

concern about the selectivity of fishing and the magnitude of learning the hook through 24 
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the experience(s) of being caught and released via multiple catch and release fishing 1 

experiments, 4. the effectiveness of cutting the fishing line on deep-hooked fish for 2 

minimizing the hooking mortality.  3 

In this dissertation, I have documented the magnitude of the impact of fishing on 4 

fish populations and the effectiveness of catch and release fishing for sustaining 5 

resources of stream-dwelling salmonids (Fig. 1.1). First, I examined the relationships 6 

between catch per unit effort (CPUE) and abundance in a mountain stream for two 7 

sympatric salmonids, the white-spotted charr and the red-spotted masu salmon (Chapter 8 

2). Second, I examined the effects of a single catch and release fishing event on growth, 9 

survival, and vulnerability to future fishing for white-spotted charr (Chapter 3). Third, I 10 

investigated the effects of phenotypic variation and experience of being caught on 11 

vulnerability to fishing for white-spotted charr, through a multiple catch and release 12 

experiment (Chapter 4). Fourth, I followed the fate of deep-hooked white-spotted charr 13 

released by cutting the fishing line (Chapter 5). 14 

This dissertation would not have been possible without the continuing support and 15 

encouragement of my supervisor, Associate Professor Takashi Matsuishi. I express my 16 

sincere gratitude to Professor Kunio Shirakihara and Ichiro Aoki, and Associate 17 

Professor Takashi Yamakawa, Kazuhiko Hiramatsu for reviewing this dissertation. I also 18 

thank Dr. Kentaro Morita for providing many ideas and suggestions as well as 19 

encouragement; all parts of this dissertation were conducted as a joint research project 20 

with him, and Takeshi Honda for helping with my analyses. I thank colleagues at the 21 

Laboratory of Marine Bioresource Science, Division of Marine Bioresource and 22 

Environmental Science, Research Faculty of Fisheries Sciences, Hokkaido University, 23 

and the staffs of the Yamanashi Fisheries Technology Center for their advice and 24 



 8

encouragement. 1 
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 2 

Fig. 1.1. Schematic diagram explaining the catch and release fishing. I evaluated the 3 

magnitude of the impact of fishing on fish populations (chapter 2), the effects of a catch 4 

and release fishing on individuals (chapter 3), the selectivity of fishing through a 5 

multiple catch and release experiment (chapter 4), and a method for reducing hooking 6 

mortality just after fishing (chapter 5). 7 

8 
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2 1 

 Exploitation rates and relationships between catch per unit 2 

effort and abundance of salmonids in a mountain stream 3 

 4 

2-1. Introduction 5 

The exploitation rates by recreational fishing are elementary information to assess 6 

the magnitude of fishing impacts on fish populations (Lewin et al. 2006). Annual 7 

exploitation rates by recreational fishing range from < 10% to > 80% (Lewin et al. 8 

2006). For example, annual exploitation rates estimated 14–60% in rainbow trout (Cox 9 

and Walters 2002) and 48–50% in sockeye salmon (O. nerka, Matsuishi et al. 2002). 10 

Exploitation rates by recreational fishing differ also between sympatric species. Using 11 

population models, exploitation rate of cutthroat trout (O. clarki) was 2.5 folds greater 12 

than that for brook trout (S. fontinalis, Paul et al. 2003), therefore, fishing is one of 13 

factors to determine distributions of both species (Dunham et al. 2002). Although the 14 

information of exploitation rates of more than two sympatric species is important in 15 

discussing fishery management, it rarely has been assessed in the fisheries literature 16 

(Holtby et al. 1992, Paul et al. 2003). 17 

The relationship between recreational fishing and abundance is also important as 18 

well as exploitation rate. Catch per unit effort (CPUE) is often used to assess fish 19 

populations within commercial and recreational fisheries, and strict proportionality 20 

between CPUE and abundance is frequently assumed (Harley et al. 2001). However, 21 

this assumption of proportionality is not expected to apply to all populations. Clark 22 
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(1985) proposed various forms of the CPUE-abundance relationship. “Hyperstability” 1 

occurs when CPUE remains high while abundance drops, whereas “hyperdepletion” 2 

occurs when CPUE declines much faster than abundance (Hilborn and Walters 1992). 3 

Hyperstability is an especially serious problem, because it results in the overestimation 4 

of abundance from CPUE data. Such overestimations have been documented in not only 5 

commercial fisheries (Matsuishi et al. 1993; Harley et al. 2001; Gaertner and 6 

Dreyfus-Leon 2004) but also recreational fishing (Peterman and Steer 1981; Bannerot 7 

and Austin 1983). However, there have been no studies about the relationship between 8 

CPUE and abundance in mountain streams. 9 

In this chapter, I examined the exploitation rates and the relationships between 10 

CPUE by hook-and-line fishing and abundance within pools in a mountain stream to 11 

assess the magnitude of the effect of fishing on fish populations. 12 

 13 

2-2. Materials and methods 14 

Study area 15 

The field study was conducted in the Ara Stream (35°48’N, 138°35’E; Fig. 2.1), a 16 

tributary of the Fuji River, in central Japan. Deciduous and conifer forest canopy 17 

covered approximately 20-40% of the stream width. White-spotted charr and 18 

red-spotted masu salmon have a non-anadromous life history (Endou et al. 2006). The 19 

study area is open to fishing from March to September, but there has been no stocking 20 

of hatchery-reared fish for several decades. 21 

Fishing experiments and underwater observations 22 

I measured the area of 92 pools in March 2004. The center length of each pool was 23 

measured (cm). Stream width was measured (cm) at three evenly spaced transects along 24 
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the length of each pool. Pool size ranged from 7.35 to 396.58 m2 (63.4 ± 69.0 m2, mean 1 

± SD).  2 

Fishing experiments were conducted from 8 May to 6 June 2004. I fished in all 3 

pools during daylight using a 6.1-m carbon rod, 1.5-lb fluorocarbon line (diameter: 4 

0.076 mm), a 1/128-oz sinker, a single barbed hook (gape width: 5.0 mm), and a live 5 

bait (caddisfly larva Stenopsyche marmorata, body length: 15.1 ± 3.6 mm, mean ± SD). 6 

The duration of fishing was determined based on pool area at 0.5 min / m2, making 7 

fishing effort per pool area equal in all pools. Therefore, the relationship between CPUE 8 

and fish density correspond to the relationship between the number of fish caught per 9 

fishing in a pool and the number of fish in a pool. I assumed the number of fish caught 10 

per fishing in a pool as the CPUE of each species in each pool. To the extent possible, 11 

the bait was naturally drifted or dropped down into all areas of the study pools. 12 

Captured fish were released into their original pool immediately after the fishing period. 13 

Water temperature was 10.4 ± 2.1 °C, which is within the preferred feeding range of 14 

white-spotted charr and masu salmon (Takami et al. 1997; Takami and Sato 1998).  15 

Shortly after fishing was complete, I counted the fish in each pool by underwater 16 

observation using snorkeling gear. I assumed negligible fish migration (i.e., none 17 

entered or exited the pool between fishing and snorkeling), because white-spotted charr 18 

and red-spotted masu salmon are strongly resident during the non-breeding season 19 

(Nakano et al. 1990; Nakamura et al. 2002; Sakata et al. 2005). I was equipped with a 20 

wetsuit, mask, and snorkel and entered at the lower end of each pool, then crawled 21 

slowly upstream in a zigzag pattern (Thurow 1994). Observed salmonids were 22 

identified to species, counted, and classified into three groups (total body length: <100, 23 

100–199, ≥ 200 mm). Newly emerged fry (age-0+ fish) were not counted. The ability 24 
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to count fish by snorkeling varies along with personal skill or clearness of water, giving 1 

estimates that are 40-80 % of those based on electrofishing (Rodgers et al. 1992; 2 

Thurow and Schill 1996; Mullner et al. 1998). In this observation, however almost all 3 

fish could be seen because the water is very clear in Japanese mountain streams and 4 

horizontal visibility is generally as far as 6 m. In addition, a waterproof headlight was 5 

used to find fish hiding behind rocks. After snorkeling, 25 of 92 pools were fished using 6 

an electrofisher (Smith-Root, Inc., Vancouver) and a dip net in two depletion passes 7 

(Zippen 1958) to obtain population estimates using the computer program CAPTURE 8 

(White et al. 1978). There was no significant difference for either species in the 9 

numbers counted by snorkeling and estimated by electrofishing (paired t-test, 10 

white-spotted charr: df = 14, p = 0.105, red-spotted masu salmon: df = 14, p = 0.215). 11 

The correlation coefficients between snorkeling and electrofishing were sufficiently 12 

high (white-spotted charr: r = 0.840, red-spotted masu salmon: r = 0.853). Therefore, I 13 

used the number of fish counted by snorkeling as the abundance of each species in each 14 

pool. 15 

Statistical analyses 16 

Data for statistical analyses were collected from 88 pools; 4 pools were omitted 17 

because they lacked fish. White-spotted charr were found in 65 pools, and red-spotted 18 

masu salmon were found in 64 pools; both species were found in 41 pools. I assumed 19 

that the number of fish caught in a given fish abundance per unit of effort is modeled 20 

as a Poisson distribution.  21 

First, I examined whether abundance was related to CPUE using a GLM. The 22 

best-known GLM for count data assumes a Poisson distribution (Agresti 2002). 23 

Estimated likelihood ratios were tested using chi-square tests (Hardy 2002).  24 
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Additionally, I examined whether the relationship between CPUE and abundance 1 

was proportional. The simplest model relating the abundance of fish to CPUE assumes 2 

a proportional relationship (Peterman and Steer 1981): 3 

 4 

ii qAU =  5 

 6 

where Ui is the CPUE in pool i, q is the catchability coefficient, and Ai is the 7 

abundance in pool i. The simplest non-proportional model is the power curve (Harley 8 

et al. 2001): 9 

 10 

β
ii qAU =  11 

 12 

where Ui, q, and Ai are defined as above, and β represents the shape parameter of the 13 

power curve. Although a number of non-proportional models have been proposed 14 

(Bannerot and Austin 1983; Richards and Schnute 1986), power curves are widely 15 

used by fishery agencies (Gaertner and Dreyfus-Leon 2004). If β = 1, the model 16 

reduces to proportional model. Whereas, if β > 1, U declines faster than A, producing 17 

hyperdepletion; conversely, if β < 1, U declines slower than A, resulting in 18 

hyperstability. 19 

From the candidate models (i.e., proportional or non-proportional) I decided to 20 

examine the relationship between CPUE and abundance. With the intent of modeling 21 

catch data in the form of hooking (or not) per unit of effort, according to Gaertner and 22 

Dreyfus-Leon (2004), I assumed that a Poisson likelihood function relates the 23 

observed CPUE (Ui being a non-negative integer, Ui = 0, 1, 2, 3, ...) and predicted 24 
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CPUE (Ûi from either the proportional or the power curve model) in pool i as follows: 1 

 2 
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where θ is parameter(s) of each candidate model (i.e., q for proportional model, q and 5 

β for power curve model), L(θ) is maximum likelihood, Π is the product symbol, and e 6 

is the base of natural logarithms (Agresti 2002). Model parameters were estimated by 7 

minimizing: 8 

 9 
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 11 

The AIC was used as an objective means of model selection. Over-dispersion 12 

should be considered if members occur in schools or flocks (Burnham and Anderson 13 

2002). I needed to allow for over-dispersion because salmonids show a heterolytic 14 

distribution (Nakano 1995a, 1995b). The simplest way to allow for over-dispersion is 15 

to perform a quasi-likelihood estimate of the variance inflation factor (ĉ) from the 16 

chi-square goodness-of-fit statistic (χ2) of the most parameterized model and its 17 

degrees of freedom (Burnham and Anderson 2002), where ĉ is: 18 

 19 

df
ˆ

2χ=c  20 

 21 

Using quasi-likelihood theory, and accounting for small-sample bias correction, the 22 
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conventional AIC criterion is modified as (Burnham and Anderson 2002): 1 

 2 
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 4 

where n is the number of observations, and K is the number of parameters (including 5 

ĉ). 6 

 7 

2-3. Results 8 

The captured red-spotted masu salmon were larger than those observed, whereas 9 

there was no significant difference for white-spotted charr (Mann-Whitney U test, 10 

masu salmon; p = 0.006, charr; p = 0.135, Table 2.1). Additionally, for the observed 11 

fish, the total length distribution differed between white-spotted charr and red-spotted 12 

masu salmon (Mann-Whitney U test, p = 0.024). 13 

The exploitation rates (total number of fish caught / total abundance) of 14 

white-spotted charr and red-spotted masu salmon were 17.9 % (46 / 257) and 10.8 % 15 

(90 / 830), respectively (Table 2.1). White-spotted charr was more vulnerable to 16 

fishing (G-test, p = 0.001). GLM analysis showed a significant positive correlation 17 

between CPUE and abundance, and CPUE differed among white-spotted charr and 18 

red-spotted masu salmon (abundance: 2
1χ  = 32.982, p < 0.001; species: 2

1χ  = 19 

13.647, p < 0.001). According to the model selection and parameter estimates, the 20 

proportional model fitted better than the power curve model for white-spotted charr, 21 

whereas for red-spotted masu salmon, the power curve model fitted better (Table 2.2, 22 

Fig. 2.2). The shape parameter β was estimated to be < 1.0 (0.5753) for red-spotted 23 

masu salmon, suggesting that CPUE declines more slowly than abundance (i.e., 24 
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hyperstability).  1 

 2 

2-4. Discussion 3 

This study demonstrated a relationship between hook-and-line fishing and fish 4 

abundance using both experimental fishing via random searching and underwater 5 

observations in a natural mountain stream. Even though identical angling methods 6 

were used in the same habitat, my results suggest that the two species exhibit different 7 

exploitation rates and CPUE-abundance relationships.  8 

The exploitation rates of white-spotted charr (17.9 %) and red-spotted masu 9 

salmon (10.8 %) were substantially high in this experiment. If all caught fish are 10 

removed at consistent exploitation rates by proportional fishing efforts to pool areas as 11 

my experiments, the abundance of white-spotted charr would decrease to 13.9% of 12 

current levels by only 10 anglers, whereas the abundance of red-spotted masu salmon 13 

would decrease to 31.9% of current levels. Therefore, in both species, annual 14 

exploitation rates should become extremely high.  15 

The CPUE-abundance relationship exhibited hyperstability only in red-spotted 16 

masu salmon. Usually, hyperstability can result from the tendency for fishing activities 17 

to be concentrated in areas where the fish are located when abundance is low, likely 18 

because of communication among fishermen and their personal experiences (e.g., 19 

Clark 1985; Johnson and Carpenter 1994). However, hyperstability was exhibited in 20 

this study, even though experimental fishing involved random searching by a single 21 

fisherman. Thus, actual fishing activities by general recreational fishermen are much 22 

more likely to induce hyperstability. According to my results, CPUE would be 23 

inappropriate as an index of abundance. 24 
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Interspecific differences in the relationships between CPUE and abundance may 1 

result from differences in species characteristics. Specifically, when nearby fish are 2 

caught, the reaction of other fish to the capture event differs among species. My 3 

observations indicated that for red-spotted masu salmon, when a fish is caught, the 4 

remaining fish are startled and learn to avoid the line and hook. As a result, the 5 

abundance of red-spotted masu salmon that can potentially be fished is less than the 6 

actual abundance. Ishigaki (1984) suggested that red-spotted masu salmon are more 7 

cautious than white-spotted charr. As a consequence, CPUE was asymptotically stable, 8 

even though red-spotted masu salmon were more abundant. Whereas, limiting the data 9 

set to pools that contained fewer than five red-spotted masu salmon (N = 21), the 10 

slope q of the linear model was 0.2196, which is greater than the value for 11 

white-spotted charr. As a result, CPUE declines more slowly than abundance (i.e., 12 

hyperstability). 13 

Even if the data set is limited to pools that contain less than 25 red-spotted masu 14 

salmon (N = 56), corresponding to the maximum abundance of white-spotted charr, 15 

the power curve model still provided a better fit of the relationship between CPUE and 16 

abundance. Conversely, white-spotted charr CPUE was proportional to abundance, 17 

which was likely caused by their boldness, even when nearby fish were caught. In a 18 

catch-and-release experiment, Tsuboi and Morita (2004) demonstrated that learning in 19 

white-spotted charr was weak (see also Chapter 4 in this dissertation). 20 

Body sizes of captured red-spotted masu salmon were larger than those observed 21 

red-spotted masu salmon, whereas this pattern was less obvious in white-spotted charr. 22 

These results may be related to differences in the home-range preferences of the two 23 

salmonids. The dominance hierarchy of red-spotted masu salmon is usually 24 
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determined linearly with the water column, whereas white-spotted charr often use 1 

branched lines in locations with slower currents than those preferred by red-spotted 2 

masu salmon (Nakano 1995a). Although I fished in all areas of the study pools, 3 

drifting bait within the main current may have resulted in greater vulnerability of 4 

larger red-spotted masu salmon. Among the observed fish, white-spotted charr were 5 

larger than red-spotted masu salmon, although this size difference likely did not affect 6 

the relationship between fishing and abundance. Because I used fishing gear, bait, and 7 

methods typical for stream-dwelling salmonids in Japan, it is unlikely that gear 8 

competition “(i.e., interspecific difference of fishing selectivity by fishing gear)” 9 

occurred between the two species. Additionally, the dietary requirements for 10 

white-spotted charr and red-spotted masu salmon are similar (Nakano 1995a). 11 

Potential reasons why larger fish were more vulnerable to fishing than smaller fish are 12 

discussed in the general discussion (Chapter 6). 13 

This study showed that stream-dwelling salmonids were vulnerable to fishing. 14 

Therefore, regulations are essential for sustaining fishing resources. In Chapters 3 and 15 

4, I investigate the effectiveness of catch and release fishing as a management tool to 16 

reduce the impact of fishing on white-spotted charr populations, which were very 17 

vulnerable to fishing during the present study. 18 

19 
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Table 2.1. Numbers of white-spotted charr (WSC) and red-spotted masu salmon 1 

(RMS) classified into three groups (total body length: <100, 100–199, ≥ 200 mm) 2 

captured by hook and line, and numbers observed via snorkeling in 88 pools within 3 

Ara Stream.  4 

 5 

Captured Observed
Species TLa (mm) < 100 100 – 199 ≥ 200  < 100 100 – 199 ≥ 200

WSC 0 34 12 15 191 51

RMS 0 72 18 44 682 104  6 
a total length 7 

 8 

 9 

Table 2.2. Summary of analyses using proportional and non-proportional models of 10 

the relation between catch per unit effort (number of fish caught / fishing in a pool) 11 

and snorkeling-estimated abundance of white-spotted charr (WSC) and red-spotted 12 

masu salmon (RMS) in pools within Ara Stream (q = catchability; β = shape 13 

parameter; K = number of parameters in the model; –LL = negative log likelihood; 14 

QAICc = quasilikelihood Akaike information criterion corrected for small-sample 15 

bias; ∆ = QAICc difference between the given model and the model with the lowest 16 

value with each species). 17 

 18 

Species Model q β K –LL QAICc   ∆

WSC Proportional 0.1846 1.0000 2 59.930 146.446 0

Non-proportional 0.1973 0.9637 3 59.900 148.576 2.130

RMS Proportional 0.1084 1.0000 2 101.208 173.134 8.101

Non-proportional 0.3569 0.5753 3 95.034 165.033 0  19 
20 
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Fig. 2.1. Map showing location of study area. 3 
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Fig. 2.2. Proportional and non-proportional relationships between hook-and-line catch 3 

per unit effort (CPUE; i.e., number of fish caught / fishing in a pool) and 4 

snorkeling-estimated abundance for (a) white-spotted charr and (b) red-spotted masu 5 

salmon in pools within Ara Stream. Some points overlap, especially at low 6 

white-spotted charr abundances.  7 

8 
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3 1 

 Effects of catch and release fishing on growth, survival, and 2 

vulnerability to fishing for white-spotted charr 3 

 4 

3-1. Introduction 5 

The ultimate success of catch and release fishing hinges on ensuring high 6 

survival rates for released individuals by minimizing injury and mortality (Wydoski 7 

1977; Bartholomew and Bohnsack 2005). However, caught fish suffer from substantial 8 

stress (e.g., hook punctures, fighting until landing, and handling). There have been 9 

numerous studies which evaluated the effects of catch and release fishing.  10 

Growth  11 

Physiological effects such as increased cortisol levels in muscle were detected 12 

associated with catch and release fishing in rainbow trout (Pankhurst and Dedual 13 

1994), Atlantic salmon (Salmo salar, Booth et al. 1995), largemouth bass (Gustaveson 14 

et al. 1991), and smallmouth bass (M. dolomieu, Kieffer et al. 1995). The way in 15 

which physical injury or stress from fishing influences feeding and growth in fish is 16 

not well understood. Siepker et al. (2006) observed decreased feeding by largemouth 17 

bass subsequent to be caught and released, whereas fishing had no effect on the 18 

growth rates of rainbow trout (Mason and Hunt 1967), white-spotted charr (Doi et al. 19 

2004), and largemouth bass (Pope and Wilde 2004). 20 

 Survival 21 

Fish that have been caught and released might die from lethal injuries or stress. 22 
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Muoneke and Childress (1994) reviewed mortality rates attribute to catch and release 1 

for both freshwater and marine species. They reported that mortality for rainbow trout 2 

varied from 1 to 95 % depending on the fishing method, gear, and environmental 3 

conditions. In Japan, the mortality rates for hatchery-reared white-spotted charr and 4 

masu salmon due to bait fishing in artificial ponds were reported as 5−40 % and 5 

5−10 %, respectively (Doi et al. 2004). 6 

Vulnerability of caught and released fish to future fishing 7 

If caught and released fish were to survive, their vulnerability to fishing might 8 

decrease through learning (Beukema 1970; Yoneyama et al. 1996). Despite this 9 

concern, few studies demonstrated the effect of the experience of being caught on 10 

vulnerability to future fishing.  11 

The evaluation of growth, survival, and vulnerability to fishing after a single catch 12 

and release for wild populations are elementary information to assess the magnitude of 13 

catch and release fishing on fish populations. This information can also be a valuation 14 

basis to assess the adequacy of previous studies under artificial conditions, especially 15 

in related species.  16 

In this chapter, I examine the effects of a single catch and release event on growth, 17 

survival, and vulnerability to additional fishing for white-spotted charr in four wild 18 

streams to evaluate the effectiveness of catch and release fishing as a management tool. 19 

White-spotted charr is suitable for catch and release experiment in Hokkaido, because 20 

almost all of the fish have a non-anadromous life history in upstream from impassable 21 

dams (Morita et al. 2000), where fishing pressure by anglers is negligible. 22 

 23 
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3-2. Materials and methods 1 

Study area 2 

I conducted a field study in four streams: the Mumei (KM) and Katsura streams 3 

(KK) of Kame River basin, and the Torii (AT) and Sasuke streams (AS) of Assabu 4 

River basin (Table 3.1, Fig. 3.1), in southern Hokkaido. The study areas were located 5 

upstream from impassable dams. White-spotted charr have relatively high residency 6 

during the summer, which is a non-spawning season (Nakamura et al. 2002, Sato and 7 

Watanabe 2004), and therefore movement of individuals downstream and out of the 8 

experimental areas was thought to be negligible during the study period. Fish fauna at 9 

all of the study areas included only white-spotted charr and fluvial sculpin (Cuttus 10 

nozawae). Fishing pressure, excluding the experimental fishing, was negligible: no 11 

fishermen were encountered during the 23 days of fieldwork. 12 

Fishing experiments and measurements 13 

Two fishing experiments were conducted at each study area. In the first 14 

experiment, conducted between 23 May and 9 June 2000, the fish in the study area 15 

divided into two groups: caught fish and control fish (Table 3.2). The entire study area 16 

was fished during the daytime using a 4.5-m carbon rod, 3-lb nylon line (φ = 0.127 17 

mm), a 1/64 oz. (0.443 g) sinker, and a single-barbed hook (gape width: 7.7 mm), with 18 

a wax moth larva (Galleria mellonella) as live bait (straight body length: 22.8 ± 1.7 19 

mm, mean ± SD). Pliers were used to remove hooks from deep-hooked fish, which 20 

were defined as fish hooked in the esophagus or gills. I counted the number of fish 21 

that died just after fishing and calculated the mortality rate. I put the caught fish into 22 

portable pens (width, 20cm; length, 45cm; depth, 45cm) that were established in the 23 

stream. After fishing, the uncaught fish were collected using an electrofisher 24 
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(Smith-Root, Inc., Vancouver) and a dip net on the same day for use as control fish. I 1 

also shocked the caught fish in the portable pens to simulate the conditions 2 

experienced by the control fish. The fork length of each captured fish was measured to 3 

the nearest 0.5mm. The fish were individually identified using numbered anchor tags 4 

(15 mm; Japan Bano’k Co., Ltd., Tokyo) placed at the base of the dorsal fin and 5 

immediately released. The dropout of anchor tags was deemed negligible because no 6 

fish were caught bearing scarring at the point of attachment. 7 

Approximately 50 days later, the recapture experiment (experiment two) was 8 

conducted for recapture between 14 July and 5 August (Table 3.2). Following the same 9 

methods as in experiment one, fish were captured first through fishing, and then 10 

additional fish were collected using an electrofisher. Recaptured fish were again 11 

measured for fork length. The marked fish from the first experiment comprised 66.2 – 12 

82.0 % of all fish caught, by both fishing and electrofishing, during the second 13 

experiment in each area. Therefore, the marking ratios in first experiment were 14 

substantially high. 15 

Growth, survival, and vulnerability to fishing 16 

To evaluate the latest growth conditions, the growth increment (GI) was 17 

calculated individually as:  18 

 19 

mr
iii LLGI −=  20 

 21 

where GIi is the growth increment between marking and recapture, r
iL  is the fork 22 

length at recapture (i.e., second experiment), and m
iL  is the fork length at marking 23 
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(i.e., first experiment). There was a negative correlation between GI and mL  (GI = 1 

13.38 − 0.024× mL , r = −0.170, p < 0.001). Therefore, GIi was standardized according 2 

to Yokoyama (1998): 3 

 4 

)( mm
iii LLbGISGI −×+=  5 

 6 

where SGIi is a standardized growth increment, b is the slope of the above regression 7 

(i.e., b = −0.024), and mL  is the average fork length at marking ( mL  = 151 mm). 8 

Two-way ANOVA was used to examine how SGI differed with treatment (caught 9 

versus control fish) and among the streams. Additionally, multiple comparisons of SGI 10 

among the streams were performed using Bonferroni’s inequality (Sokal and Rohlf 11 

1995). 12 

I compared the recapture rates during the second experiment as an index of 13 

survival between caught and control fish using:  14 

 15 

F

FCFFF
rec N

NNP +=   ,  
C

CCCFC
rec N

NNP +=  16 

 17 

where F
recP  is the recapture rate of fish caught by fishing in the first experiment (i.e., 18 

caught fish), NF is the number of fish caught by fishing in the first experiment, NFF is 19 

the number of fish caught by fishing in both the first and second experiments, and NFC 20 

is the number of fish caught by fishing in the first experiment and recaptured by 21 

electrofishing in the second experiment. C
recP  is the recapture rate of fish collected by 22 
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electrofishing in the first experiment (i.e., control fish), NC is the number of fish 1 

collected by electrofishing in the first experiment, NCF is the number of fish collected 2 

by electrofishing in the first experiment and recaptured by fishing in the second 3 

experiment, and NCC is the number of fish collected by electrofishing in both the first 4 

and second experiments. In addition, I estimated the confidence interval for the 5 

recapture rates using a binominal distribution according to Sokal and Rohlf (1995).  6 

I tested the effects of the experience of being caught on the survival of caught and 7 

released fish. Multiple logistic regression analysis was used to examine whether 8 

stream specific constant ((Stream A, Stream B, Stream C); KM=(1, 0, 0), KK=(0, 1, 0), 9 

AT=(0, 0, 1), AS=(0, 0, 0)), fork length at marking ( mL ), and capture experience 10 

(caught fish = 1, control fish = 0) were related to the recapture rate (Prec; recaptured by 11 

fishing or electrofishing = 1, not recaptured = 0). 12 

I compared the probability of being caught by fishing in the second experiment 13 

between caught and control fish in the first experiment using:  14 

 15 

FCFF

FFF
fish NN

NP
+

=   ,  
CCCF

CFC
fish NN

NP
+

=  16 

 17 

where F
fishP  is the probability of being caught by fishing in the second experiment for 18 

the fish caught by fishing in the first experiment (i.e., caught fish), and C
fishP  is the 19 

probability for the fish collected by electrofishing in the first experiment (i.e., control 20 

fish). Multiple logistic regression analysis was used to examine whether stream 21 

specific constant ((Stream A, Stream B, Stream C); KM=(1, 0, 0), KK=(0, 1, 0), AT=(0, 22 
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0, 1), AS=(0, 0, 0)), fork length at recapture ( rL ), capture experience (caught fish = 1, 1 

control fish = 0) , and standardized growth increment (SGI) were related to the 2 

probability of being caught in the second experiment (Pfish; recaptured by fishing = 1, 3 

recaptured by electrofishing = 0).  4 

 5 

3-3. Results 6 

The fork lengths of the caught and control fish ranged from 85.0 to 282.5 mm 7 

(164.0 ± 41.7mm, mean ± SD) and 80.5 to 275.0 mm (147.4 ± 40.1mm), respectively. 8 

Table 3.2 shows sample sizes for each study area in the first and second experiments. 9 

In the first experiment, 19 of 282 caught fish died within a few minutes. The hooking 10 

mortality was 6.7 % (95 % confidence interval: 4.6−10.5%). All of the dead fish (fork 11 

lengths were 110.0 to 211.0 mm, mean =165.3±29.6mm) were hooked deeply in the 12 

esophagus or gills. 13 

There was no significant difference in the standardized growth increment (SGI) 14 

between the caught and control fish, but the stream effect and the interaction between 15 

the streams and experience of being caught (caught or control fish) were significant 16 

(Table 3.3, Fig. 3.2). With the Bonferroni test, the SGI of caught fish was higher than 17 

that of control fish only in the Sasuke stream (AS) (p = 0.009, Fig. 3.2). The recapture 18 

rate (Prec), as an index of survival, was 78 % (95 % confidence interval: 72−83 %) for 19 

caught fish and 74 % (69−79 %) for control fish. There were no significant differences 20 

in recapture rates with respect to the experience of being caught or fork length, but 21 

there was a significant stream effect (Table 3.4, Fig. 3.3). The probability of being 22 

caught in the second experiment (Pfish) increased significantly with fork length and 23 

SGI, but was not affected by the experience of being caught (Table 3.5, Fig. 3.4). 24 
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 1 

3-4. Discussion 2 

Growth 3 

A single catch and release fishing event had no effect on the growth increment of 4 

white-spotted charr (Table 3.3, Fig. 3.2), although some fish might have suffered 5 

stress from the experience. This result agrees with previous studies (Mason and Hunt 6 

1967; Doi et al. 2004; Pope and Wilde 2004). Doi et al. (2004) reported that there was 7 

no negative effects of the catch and release on the growth and condition factor of both 8 

white-spotted charr and masu salmon in experimental ponds. However, in this study, 9 

the growth increment was significantly higher in caught fish than in control fish, but 10 

only in the Sasuke stream (AS, Fig. 3.2).  11 

Survival 12 

There was no significant difference in the recapture rate with the experience of 13 

being caught (Table 3.4, Fig. 3.3), which suggests that caught fish and control fish live 14 

similar lives after release. There was also no correlation between the recapture rate 15 

and fork length, indicating that small and large fish lead similar lives after release. 16 

Studies by Bettoli and Osborne (1998) and Nelson (1998) support these results in 17 

striped bass (Morone saxatilis). The hooking mortality within a few minutes after 18 

capture was 6.7 %. Because the mortality of masu salmon was same level as 19 

white-spotted charr in experimental ponds (Doi et al. 2004), the mortality of this 20 

chapter could apply to Japanese stream-dwelling salmonids. All of the fish that died 21 

shortly after capture were deep-hooked fish, which required more time for hook 22 

extraction and suffered greater injury in the process. The reduction in early mortality 23 

directly increases the effectiveness of catch and release fishing. 24 
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Vulnerability to fishing in caught and released fish 1 

The experience of being caught had no effect on the vulnerability to fishing for 2 

charr, suggesting that fish that had been caught and released had a similar 3 

vulnerability to fishing as same level as control fish (Table 3.5, Fig. 3.4). If fish were 4 

to experience capture multi times, they might become less vulnerable through 5 

cumulative learning. Alternatively, individual differences in vulnerability may be 6 

manifested, with more vulnerable fish being repeatedly caught and released. In the 7 

next chapter, I investigated the effects of learning and individuality on vulnerability. 8 

Fork length had a positive correlation with vulnerability to fishing in the second 9 

experiment. In other words, larger fish were caught selectively. Potential reasons why 10 

larger fish were more vulnerable to fishing than smaller fish are discussed in the 11 

general discussion (Chapter 6). 12 

Growth increment was positively correlated with fishing vulnerability in the 13 

second experiment. Raat (1985) reported the same tendency in carp. Fast-growing fish 14 

should have higher food intake rates compared with slow-growing fish, because 15 

growth increments correlate with metabolic rates (Yamamoto et al. 1998). Thus, 16 

higher growth rates lead to higher fishing vulnerability. 17 

The experiments in this chapter found no effect of catch and release fishing on 18 

growth, survival, and vulnerability to fishing. However, under actual fishing pressure, 19 

fish would be caught and released repeatedly. Therefore, in the next chapter, I use a 20 

multiple catch and release experiment in a wild stream to investigate individual 21 

characteristics related to vulnerability. I discuss the relative effects of learning from 22 

the experience of being caught and the individuality of the vulnerability to fishing. 23 

24 
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 1 

Table 3.1. Physical characteristics of each study area. Mumei (KM) and Katsura 2 

streams (KK) of Kame River basin, and Torii (AT) and Sasuke streams (AS) of Assabu 3 

River basin. 4 

 5 

Study area  Length of study area (m)   Average width (cm)
KM 700 184
KK 480 365
AT 492 288
AS 675 191  6 

 7 

 8 

 9 

Table 3.2. Dates and sample sizes of each experiment. NF is the number of fish caught 10 

by fishing (caught fish) and NC is the number of fish collected by electrofishing 11 

(control fish) in the first experiment. NFF is the number of fish caught by fishing in 12 

both the first and second experiment. NFC is the number of fish caught by fishing in 13 

the first experiment and recaptured by electrofishing in the second experiment. NCF is 14 

the number of fish caught by electrofishing and recaptured by fishing in the second 15 

experiment. NCC is the number of fish caught by electrofishing in both the first and 16 

second experiment. 17 

 18 

Date N F N C Date N FF N FC N CF N CC

KM 2000/5/23, 24 85 99 2000/7/14, 15 40 30 38 43
KK 2000/6/1, 2 104 122 2000/7/17, 19 39 42 41 50
AT 2000/6/8 35 36 2000/8/5 11 17 16 8
AS 2000/6/9 39 119 2000/8/2, 3 16 10 43 40

Total 263 376 106 99 138 141

Study area
First experiment Second experiment

 19 

20 
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 1 

Table 3.3. Two-way ANOVA of the stream effect, experience of being caught in the 2 

first experiment, and their interaction on standardized growth increment. 3 

 4 

Variable df MS F P
Stream 3 977.8 37.11 <0.0001
Experience of being caught a 1 95.3 3.62 0.0578
Stream×Experience of being caught 3 91.0 3.45 0.0165
Error 475 26.3  5 

a caught or control 6 

 7 

 8 

 9 

Table 3.4. Multiple logistic regression analysis of the stream effect, fork length, and 10 

experience of being caught in the first experiment on recapture rate (Prec) as an index 11 

of survival rate (i.e., recaptured by fishing or electrofishing in the second experiment 12 

= 1, not recaptured = 0). 13 

 14 

Variable coefficient SE df P
Stream A a 0.800 0.284 1 0.005
Stream B a 0.424 0.255 1 0.096
Stream C a 0.203 0.324 1 0.531
Fork length 0.00240 0.00250 1 0.336
Experience of being caught b 0.0911 0.200 1 0.648
Constant 0.358 0.459 1 0.436  15 

a these combinations express four surveyed streams  16 
(Stream A, Stream B, Stream C); KM=(1, 0, 0), KK=(0, 1, 0), AT=(0, 0, 1), AS=(0, 0, 17 
0) 18 

b caught or control 19 

20 
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 1 

Table 3.5. Multiple logistic regression analysis of the stream effect, fork length in the 2 

second experiment, experience of being caught in the first experiment, and 3 

standardized growth increment on probability of being caught by fishing in the second 4 

experiment (Pfish) (i.e., recaptured by fishing in the second experiment = 1, recaptured 5 

by electrofishing = 0). 6 

 7 

Variable coefficient SE df P
Stream A a 0.8085 0.3089 1 0.0089
Stream B a 0.3661 0.2842 1 0.1976
Stream C a -0.3796 0.3890 1 0.3293
Fork length 0.0180 0.0030 1 <0.0001
Experience of being caught b -0.1624 0.2034 1 0.4247
Standardized growth increment 0.0410 0.0191 1 0.0317
Constant -3.5220 0.6233 1 <0.0001  8 

a these combinations express four surveyed streams  9 
(Stream A, Stream B, Stream C); KM=(1, 0, 0), KK=(0, 1, 0), AT=(0, 0, 1), AS=(0, 0, 10 
0) 11 

b caught or control 12 

13 
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Fig. 3.1. Map showing location of study areas, Mumei (KM) and Katsura streams 18 

(KK) of Kame River basin, and Torii (AT) and Sasuke streams (AS) of Assabu River 19 

basin. 20 

21 
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Fig. 3.2. Standardized growth increments of the caught and control white-spotted 3 

charr in four streams. Error bars indicate 95% confidence intervals. **p<0.01 4 
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Fig. 3.3. Recapture rates of the caught and control white-spotted charr in four streams. 3 

Error bars indicate 95% confidence intervals. 4 
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Fig. 3.4. Relationship between the fork length and probability of being caught at 4 

second experiment of the caught and control white-spotted charr in four streams. Solid 5 

and dashed lines indicate caught and control fish, respectively. These plots are 6 

calculated each 50mm class, pooled by four streams. 7 
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4 1 

Selectivity effects on white-spotted charr during catch and release 2 

fishing 3 

4-1. Introduction 4 

As almost all fishing is non-random, fisheries scientists have long wondered how 5 

fishing is selective with respective to phenotypic variation for a variety of fishing gear 6 

(Jennings et al. 2001). In the case of recreational fishing, vulnerability to fishing is 7 

related to growth increment (Raat 1985; Tsuboi et al. 2002, see also Chapter 3 in this 8 

dissertation), sex (Holtby et al. 1992), age (Mezzera and Largiadèr 2001), body size 9 

(e.g., McDonald and Hershey 1989; Yamamoto et al. 2001; Paul et al. 2003), and 10 

condition factor (Fernö and Huse 1983). 11 

In addition to phenotypic variation, vulnerability to fishing is also affected by 12 

previous capture experiences. Many studies have indicated decreases in vulnerability 13 

to fishing during the course of catch and release fishing in experimental ponds (e.g., 14 

largemouth bass: Hackney and Linkous 1978; rainbow trout: O’Grady and Hughes 15 

1980; Atlantic cod (Gadus morhua): Fernö and Huse, 1983).  16 

Moreover, vulnerability to fishing has another aspect, individuality. Some fish 17 

that are caught and released are more catchable than uncaught fish (Yoneyama et al. 18 

1992; 1996). This appears to be counterintuitive, because the learning effect should 19 

decrease the probability that the fish would be caught. Yoneyama et al. (1992) 20 

proposed inter-individual variation in vulnerability, such that catchable fish would be 21 

caught repeatedly. This interpretation is supported by evidence of inter-individual 22 

differences in boldness towards predators (Huntingford 1976), feeding behaviour 23 
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(Iguchi et al. 2001), and habitat utilization (Greenberg and Giller 2001). 1 

The probability of being caught could be explained by phenotypic characteristics 2 

and vulnerability to fishing, which is determined by capture experience and 3 

individuality. These factors would act in concert to affect vulnerability. It is important 4 

to evaluate the relative contributions of phenotypic characteristics, learning behaviour, 5 

and individuality in order to understand the selectivity of recreational fishing.  6 

In this chapter, I investigated the effects of phenotypic variation and experience 7 

of being caught on vulnerability to fishing for an individually-marked population of 8 

white-spotted charr, through a multiple catch and release experiment. 9 

 10 

4-2. Materials and methods 11 

Study area 12 

I carried out a field study in the Sasagoya Stream (Fig. 4.1), a headwater tributary 13 

of the Shiodomari River in southern Hokkaido, Japan, from 1 June to 15 August 2001. 14 

The Shiodomari River has been designated as a protected freshwater area and is closed 15 

year-round to recreational fishing for all species. The study area was 0.9 km in length 16 

and 2.7 ± 0.9 m in width. White-spotted charr have a non-anadromous life history in 17 

the study area and were located upstream from impassable dams (Morita et al. 2000). 18 

White-spotted charr have relatively high residency during the summer, which is a 19 

non-spawning season (Nakamura et al. 2002, Sato and Watanabe 2004), and therefore 20 

movement of individuals downstream and out of the experimental area was negligible 21 

during the study period. Deciduous forest canopy covered approximately 80% of the 22 

entire width of the stream. During the study period, the water temperature was 23 

8.2–16.4 °C (mean ± SD, 13.0 ± 1.6 °C), as measured with a data logger (Onset 24 



 41

Computer Co., MA) placed within the preferred feeding range of white-spotted charr 1 

(Takami et al. 1997).  2 

Fishing experiment and measurements 3 

Before fishing, I identified individual white-spotted charr in the study area. Fish 4 

were collected using an electrofisher (Smith-Root, Inc., Vancouver) and a dip net, 5 

making one pass per day from 22 to 24 May (Table 4.1). The fork length of each 6 

captured fish was measured to the nearest 0.5 mm. Fish were individually identified 7 

using numbered anchor tags (15 mm; Japan Bano’k, Co., Ltd., Tokyo) placed at the 8 

base of the dorsal fin and immediately released at the capture site. The dropout rate for 9 

anchor tags was negligible, given that no fish were found with scarring that would 10 

have appeared after dropout. The recapture rate of tagged white-spotted charr after 50 11 

days did not differ between fork length classes, which ranged from 80.5 to 282.5 mm 12 

(Tsuboi et al. 2002, see also Chapter 3 in this dissertation), indicating a similar level of 13 

tagging stress throughout the fork length range. Therefore, a total of 415 fish larger 14 

than 90 mm were individually identified in this study. 15 

Eleven fishing episodes were conducted from 1 June to 11 August 2001 (Table 16 

4.1). I fished the entire study area during daylight on each day, using a 4.5-m carbon 17 

rod, 3-lb nylon line (φ = 0.127 mm), a 1/64 oz. (0.443 g) sinker, and a single-barbed 18 

hook, with a wax moth larva as live bait (straight body length: 22.8 ± 1.7 mm). The 19 

hook size was 13.4 mm in linear measure, 7.7 mm in gape width, 0.54 mm in shank 20 

diameter, and 40.9 mg in weight. It was made from carbon steel (carbon content, 21 

0.8%) and was thinly nickel-plated by electrolysis. Caught fish were removed from the 22 

hook, the tag number was checked, and they were immediately released at the capture 23 

site. Previous studies have indicated that cutting the line rather than removing the 24 
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hook reduced post-release mortality for deep-hooked fish (e.g., Schill 1996; Schisler 1 

and Bergersen 1996; Tsuboi et al. 2006, see also Chapter 5 in this dissertation). 2 

Therefore, when fish were deep-hooked fish, the line was cut near the hook. Only one 3 

fish (0.14%) died before release. 4 

In total, 366 fish were recaptured during the experiment, in either the 11th fishing 5 

or 2nd electrofishing episode (recapture rate, 88.2 %; Table 4.1). For all recaptured 6 

fish, I measured fork length (to the nearest 0.5 mm), weighed somatic weight (g), sex, 7 

and aged (otolith analysis; Yamamoto et al. 1992). To compare fatness between 8 

individuals of different body sizes, I used a relative condition factor (CF) according to 9 

Iguchi et al. (2001):  10 

 11 

e

o

i

i
i W

WCF =  12 

 13 

where o
iW  is the observed somatic weight, and e

iW  is the expected somatic weight. 14 

e
iW  was obtained from a nonlinear regression as  15 

 16 

85.2r5e 1081.132.1 ii LW ××+−= −  17 

 18 

where r
iL  is the fork length at recapture. To evaluate the latest growth conditions, the 19 

standardized growth increment (SGI) was calculated as per Chapter 3:  20 

 21 

)( mm
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 1 

where b = −0.062 and mL  = 155 mm. 2 

Statistical analyses 3 

The statistical analyses included only fish that were recaptured at the end of the 4 

fishing experiment (n = 366) in the statistical analyses. Initially, I tested whether the 5 

variance of the frequency distribution of captures for each fish during the 11 fishing 6 

episodes was different from a Poisson distribution, using a two-tailed χ2 test (Sokal 7 

and Rohlf 1995). If the variance is significantly smaller than the theoretical case, the 8 

frequency distribution of the number of captures concentrates the average. Thus, a 9 

learning effect in response to hooking would exist, because all fish are expected to be 10 

vulnerable until they reach the average number of captures, at which point they would 11 

become less vulnerable. A larger number of captures would indicate individuality in 12 

the vulnerability to fishing, because vulnerable fish would be caught repeatedly. 13 

I analyzed the selectivity effects on fish during multiple catch and release fishing 14 

episodes. First, I examined the relationship between capture experience (i.e., the 15 

number of times caught) and phenotypic variation. Simple regression analyses were 16 

used to examine whether fork length, age, standardized growth increment, and 17 

condition factor were related to capture experience. Analysis of variance (ANOVA) 18 

was used to examine how this experience differed between the sexes. 19 

Second, I tested the effects of the capture experience on the vulnerability to 20 

fishing during the 11th fishing episode. Logistic regression analysis was used to 21 

examine whether capture experience, the time since last capture, the number of hooks 22 

in the body due to cutting of lines, fork length, standardized growth increment, 23 

condition factor, age, and sex were related to the probability of being taken by an 24 
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angler. To identify subsets of significant variables, I used the Akaike information 1 

criterion (AIC). Of the possible 256 models, the logistic regression model with the 2 

lowest AIC among the all-possible 256 models was selected as the best model. 3 

 4 

4-3. Results 5 

The fork lengths of the fish ranged from 96 to 311 mm, and the ages ranged from 1 6 

to 7 years old. The experience of being caught varied from 0 to 7 times per fish for 11 7 

fishing episodes (Fig. 4.2). On average, each fish was caught 2.15 ± 1.32 times (mean 8 

± SD). The variance was significantly smaller than the theoretical variance (χ2 test: df 9 

= 365, χ2 = 295.14, p < 0.01), suggesting that the frequency distribution of the number 10 

of times caught concentrates the average. Whereas, the number of fish with no capture 11 

experience was 41 of 366 recaptured fish (11.2%). 12 

Capture experience increased significantly with fork length and age, but not with 13 

the standardized growth increment or condition factor (Fig. 4.3a-d; fork length: r = 14 

0.418, p < 0.001; age: r = 0.372, p < 0.001; standardized growth increment: r = −0.019, 15 

p = 0.72; condition factor: r = −0.053, p = 0.31). Partial correlation analysis showed a 16 

significant positive correlation between fork length and capture experience (fork 17 

length: r = 0.212), but no significant correlation was found between age and 18 

experience (r = 0.052, p > 0.05). This indicates that larger fish, regardless of age, were 19 

vulnerable to fishing. Males had a significantly greater capture experience than 20 

females (Fig. 4.3e; F1,364 = 4.259, p = 0.04). As neither the average nor the variance of 21 

fork length differed between the sexes (average: F1,364 = 0.003, p = 0.96; variance: 22 

F188,176 = 0.892, p = 0.41), there was a sex-related difference in capture experience, in 23 

addition to the fork length effect. 24 
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Capture experience differed significantly between fish recaptured by fishing (2.14 1 

± 0.25 times, mean ± SD) and by electrofishing (1.77 ± 0.13 times) during the 11th 2 

fishing episode (ANOVA, F1,364 = 7.34, p = 0.007). The logistic regression model that 3 

included fork length and capture experience had the lowest AIC among the 256 4 

possible models. Therefore, fork length and capture experience were identified as the 5 

best predictors of the probability of being caught during the 11th episode. These 6 

results indicate that vulnerability to fishing related to capture experience, in addition 7 

to fork length. Using the best logistic regression model, I predicted the relationship 8 

between fork length and the probability of being caught in the 11th fishing episode, 9 

for different levels of experience of being caught during episodes 1st through 10th 10 

(Fig. 4.4). Large fish and the fish had a lot of experience of being caught were more 11 

vulnerable to fishing. 12 

 13 

4-4. Discussion 14 

Selectivity due to phenotypic variation 15 

Many studies have documented that larger fish are more vulnerable to fishing than 16 

smaller fish (e.g. white-spotted charr: Yamamoto et al. 2001; Tsuboi et al. 2002, see also 17 

Chapter 3 in this dissertation; cutthroat trout, bull trout (S. confluentus), and brook trout: 18 

Paul et al. 2003). My results are consistent with the findings of the previous studies (Fig. 19 

4.3a). Potential reasons why larger fish were more vulnerable to fishing than smaller 20 

fish are discussed in the general discussion (Chapter 6). 21 

Males were more likely to be caught by anglers than females (Fig. 4.3e), although 22 

there was no significant difference in fork length between the sexes. Recent studies have 23 

identified behavioral differences between the sexes in stream-dwelling salmonids 24 
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(Johnsson and Åkerman 1998; Johnsson et al. 2001). These studies of young rainbow 1 

trout and brown trout (S. trutta) reported that males are more aggressive than females in 2 

intersexual contests. Therefore, the higher activity of males might cause the male-biased 3 

vulnerability to fishing. Morphological differences between the sexes might also 4 

contribute to the male-biased vulnerability to fishing. Most salmonid species have 5 

sexual dimorphism in jaw shape at maturity: males have longer jaws than females (e.g., 6 

Reyes-Gavilán et al. 1997). As most of the fish caught in this study had attained the 7 

threshold size for maturity (Morita and Morita 2002), sexual dimorphism might have 8 

relaxed the physical limits of mouth size for males. 9 

In contradiction to the findings reported in Chapter 3 in this dissertation, there was 10 

no correlation between growth increment and vulnerability to fishing. Fast-growing fish 11 

were potentially more vulnerable to fishing than slow-growing fish (Tsuboi et al. 2002, 12 

see also Chapter 3 in this dissertation). However, experiencing several captures might 13 

cause a decrease in growth increment for fast-growing fish, owing to decreased foraging 14 

frequency caused by handling stress. As a result, the inter-individual differences of 15 

standardized growth increments would be smoothed for all fish. 16 

Selectivity due to capture experience 17 

Both learning effects and individuality would coexist in white-spotted charr 18 

through the fishing experiments. The variance of the frequency distribution of capture 19 

experience was significantly smaller than the theoretical one, suggesting the existence 20 

of a learning effect of hook. In fact, it appeared that the number of white-spotted charr 21 

approaching the bait but not biting increased during the course of the fishing 22 

experiment. Whereas, fish with greater capture experience were more vulnerable to 23 

fishing, even after adjusting for fork length (Fig. 4.4). This result is consistent with the 24 
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results of Yoneyama et al. (1992) but not with those of several other studies (Beukema 1 

1970; Raat 1985). Yoneyama et al. (1992) argued that vulnerability to fishing was 2 

related to inter-individual behavioral differences aside from body size. In Chapter 3, 3 

an effect of capture experience was not detected between two fishing episodes, 4 

possibly because the intervals of episodes were substantially long (i.e. 50days) in each 5 

river. 6 

The magnitude of the learning effect caused by capture experience would depend 7 

on not only species but also fishing pressure and the level of handling stress. Rainbow 8 

trout have polymodal nociceptors (i.e., pain receptors) (Sneddon et al. 2003), physical 9 

stimulation from the hook is considered the main factor responsible for the learning 10 

effect (Beukema 1970; Fernö and Huse 1983). Generally, increases in stimulation are 11 

positively associated with the learning (Homans 1974). Although in my fishing 12 

experiment the handling stress was expected to be small because hooking mortality 13 

was small (0.13%), the result of χ2 test of the frequency distribution of capture 14 

experience for individual fish suggested the existence of a learning effect. Under 15 

actual fishing conditions, handling stress could be greater, depending on the angler’s 16 

skill. Therefore, the learning effect might be substantial under such conditions. 17 

It is possible to explain vulnerability based on the relative magnitudes of 18 

individuality and the learning effect (Fig. 4.5). If inter-individual differences in 19 

vulnerability to fishing were of greater magnitude than the learning effect, individual 20 

fish would be caught repeatedly (Fig. 4.5a). This is the case for tilapia (Yoneyama et 21 

al. 1992) and white-spotted charr (Tsuboi et al. 2002, see also Chapter 3). Conversely, 22 

if the learning effect were greater than individuality, fish would not be repeatedly 23 

caught (Fig. 4.5b). This is the case for carp (Beukema 1970; Raat 1985). For 24 
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red-spotted masu salmon, learning effect would be greater than individuality, likely 1 

because when a fish is caught, the remaining fish are startled and learn to avoid the 2 

line and hook without fishing experiences (Chapter 2). 3 

My understanding of the changes in vulnerability to fishing for white-spotted charr 4 

during the study period is summarized in Fig. 4.5c. Vulnerability to fishing decreased 5 

with capture experience; however, the hierarchy of vulnerability did not change 6 

because individuality was greater than the learning effect. 7 

Caught fish would be valuable to anglers because these fish would be caught 8 

repeatedly if catch and release program were successful. Therefore, hooking mortality 9 

must be minimized in order to increase the population of caught fish. One promising 10 

approach to reducing hooking mortality is to cut the fishing line when a fish is deeply 11 

hooked. In the next chapter, I follow the fate of deep-hooked fish after the line has 12 

been cut, via a multiple catch and release experiment identical to that in this chapter.13 
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 1 

Table 4.1. Summary of sample sizes and water temperature for each episode. 2 

 3 

Date Purpose
Water

temperature at
noon (oC)

2001/5/22-24 Mark Electrofishing 1 415 10.3
2001/6/1 Catch and Release  Angling 1 95 (9) a 5 (1) a 11.7
2001/6/8 Catch and Release  Angling 2 72 (9) 5 (0) 12.3
2001/6/15 Catch and Release  Angling 3 66 (2) 13 (0) 11.1
2001/6/22 Catch and Release  Angling 4 61 (5) 4 (0) 10.6
2001/6/29 Catch and Release  Angling 5 69 (6) 15 (2) 15.0
2001/7/6 Catch and Release  Angling 6 84 (7) 12 (1) 14.7
2001/7/13 Catch and Release  Angling 7 69 (0) 7 (0) 14.7
2001/7/20 Catch and Release  Angling 8 81 (8) 7 (0) 12.8
2001/7/27 Catch and Release  Angling 9 72 (2) 8 (1) 14.5
2001/8/3 Catch and Release  Angling 10 66 (2) 12 (1) 13.3
2001/8/10-11 Recapture  Angling 11 103 b 14.4
2001/8/13-15 Recapture Electrofishing 2 263 b 14.2

Sampling
technique

Total number
of marked

fish captured

Deep-
hooked
fish c

 4 
a The numbers of fish that were not recaptured in the 11th fishing or the 2nd 5 

electrofishing episodes are shown in parentheses. 6 

b These fish were not released. 7 

c Deep-hooked fish were released by cutting the line. 8 

9 
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Fig. 4.1. Map showing location of study area.3 
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Fig. 4.2. Frequency distribution of experience of being caught in white-spotted charr 3 

for 11 fishing episodes.  4 

5 
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Fig. 4.3. The relationships between the experience of being caught and a) average fork 3 

length, b) age, c) standardized growth increment, d) condition factor, and e) sex. The 4 

error bars indicate 95% confidence intervals. 5 

6 
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Fig. 4.4. Relationship between fork length and the probability of being caught in the 3 

11th fishing episode with different experience of being caught during episodes 1st to 4 

10th obtained from the best logistic regression model.5 
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Fig. 4.5. Graphic model explaining the changes in vulnerability to fishing a) if the 3 

learning effect is smaller than the individual variation, and b) if the learning effect is 4 

greater than the individual variation. c) Schema explaining the intergradation of the 5 

probability of being caught with increasing capture experience of it in this study. ▲ 6 

Solid triangles indicate the experience of being caught. 7 

8 



 55

5 1 

 Fate of deep-hooked white-spotted charr with line-cut release 2 

during catch and release fishing 3 

 4 

5-1. Introduction 5 

The successful catch and release of fish can help sustain populations and 6 

maintain acceptable levels of catch per unit effort (Wydoski 1977). However, many 7 

studies of hooking mortality (reviewed in Taylor and White 1992; Muoneke and 8 

Childress 1994; Cooke and Suski 2004; Bartholomew and Bohnsack 2005) indicate 9 

that the mortality of deep-hooked fish is very high because of massive bleeding and 10 

fatal injuries during hook removal.  11 

To avoid swallowing of the hook into the esophagus, Cooke and Suski (2004) 12 

recommended the use of circle hooks, which rarely penetrated the esophagus 13 

compared with the commonly used J hooks. A new hook, the Shelton self-releasing 14 

hook, has recently been introduced. Reportedly, these hooks can be removed easily 15 

regardless of the penetration site, and thus hooking mortality is negligible with these 16 

hooks (Jenkins, 2003). Nevertheless, both circle hooks and Shelton self-releasing 17 

hooks are still uncommon in recreational fishing. 18 

Presently, cutting the line is more effective than removing the hook for reducing 19 

post-release mortality of deep-hooked fish (e.g., Mason and Hunt 1967; Schisler and 20 

Bergersen 1996; Schill 1996). Furthermore, any hooks that remain after a line is cut 21 

are likely to be evacuated by salmonids (e.g., Hulbert and Engstrom-Heg 1980; 22 
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Schisler and Bergersen 1996; Doi et al. 2005). 1 

Most studies investigating long-term hooking mortality and the evacuation of 2 

hooks after catch and release fishing have been conducted in pens. This artificial 3 

habitat is vastly different from the natural environment (e.g., food, density, predation 4 

pressure, substrate, velocity), making it difficult to evaluate the effectiveness of 5 

cutting the line under actual fishing conditions. Specifically, cutting the line might 6 

hinder foraging by deep-hooked fish in the natural environment, because remnant 7 

hooks might interrupt the passage of natural prey through the esophagus, but not 8 

hinder the passage of pellet used in mixed feed.  9 

In this study, I examined the impacts of remnant hooks on survival and estimated 10 

the time required for hook corrosion and evacuation, in a multiple catch and release 11 

experiment, identical to that in Chapter 4.  12 

 13 

5-2. Materials and methods  14 

The data used in this study originated from Tsuboi and Morita (2004, see also 15 

Chapter 4). Deep-hooked fish that were released by cutting the line were X-rayed 16 

(Sofron, Tokyo) and autopsied to locate the hook (lying or embedded), to check the 17 

degree of corrosion, and to determine whether the hook had been evacuated. When 18 

only one hook remained in a fish that had been released by cutting the line twice, I 19 

assumed that the older hook had been evacuated. The probabilities of hooks remaining 20 

( rem
iP ) and being uncorroded ( unc

iP ) in a gut at recapture were calculated for each 21 

fishing episode:  22 

 23 
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cut

rem
rem

i

i
i N

NP =  1 

 2 

where i is each fishing episode, rem
iN is the number of hooks remaining at recapture 3 

and cut
iN  is the number of fish that were deep-hooked and released by cutting the line 4 

in each fishing episode. unc
iP  was also calculated: 5 

 6 

cut

unc
unc

i

i
i N

NP =  7 

 8 

where unc
iN is the number of hooks that were uncorroded at recapture in each fishing 9 

episode. The hebdomadal probabilities of hooks remaining and being uncorroded were 10 

back-calculated from the first day of recapture to each fishing episode. For example, 11 

the probability for the 10th fishing episode corresponds to that of 7 days after cutting 12 

the line (Table 5.1). 13 

Statistical analyses 14 

I examined the degree of the hook penetration (deep or superficial) with regard to 15 

sex, which was verified by dissection (G-test) and fork length (ANOVA). A logistic 16 

regression was used to model the probability of hooks remaining and being 17 

uncorroded at a given time after the line had been cut. The probability of hooks 18 

remaining, remP̂ , equalled 19 

 20 

)exp(1
)exp(ˆ rem

bta
btaP
++

+=  21 

 22 
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where t is the number of days after cutting the line, and a and b are parameters. The 1 

probability of hooks being uncorroded, uncP̂ , was treated similarly. The model 2 

parameters were estimated using the maximum likelihood method. Here, remP̂  and 3 

uncP̂  are always decreasing functions of time, t. The times at the 50% probability of 4 

hooks remaining and of hooks being uncorroded indicate the estimated time until hook 5 

evacuation and the starting time for hook corrosion, respectively (c.f., Metcalf et al. 6 

2003). The estimated times can be calculated as –a / b from the logistic regression 7 

(Metcalf et al. 2003). 8 

 9 

5-3. Results 10 

The fork length of the marked fish ranged from 96 to 311 mm. From a total of 11 

735 captures (1.77 times per fish, on average), 88 captures were deeply hooked; all of 12 

the deep-hooked fish were alive immediately just after fishing and were released by 13 

cutting the line (Table 5.1). Eleven fish were deep-hooked twice and released in this 14 

manner. Only one fish died before release; it had not been deeply hooked, but suffered 15 

heavy bleeding. Neither the fork length nor sex ratio differed between fish subject to 16 

cut-line release and those that were not (fork length: ANOVA, F1, 733 = 0.824, p = 17 

0.364; sex: G-test, p = 0.329). 18 

In this multiple catch and release experiment, 68.8 % (53 / 77) of the 19 

deep-hooked fish were caught again after cut-line release. After the experiment, 93.5% 20 

(72 / 77) of the deep-hooked fish were recaptured. This recapture rate was as high as 21 

that of the fish had more than one experience of being caught and released normally 22 

(92.5%, 245 / 265; G-test, p = 0.952). The fish with two imbedded hooks were 23 

recaptured at a rate almost as high as the fish with one imbedded hook (10 / 11 and 62 24 
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/ 66; G-test, p = 0.945). Of the 82 hooks in the 72 deep-hooked and cut-line released 1 

fish that were sampled, 27 (32.9 %) hooks had been evacuated, 35 hooks were 2 

embedded in the esophagus (Fig. 5.1A–C), one hook was embedded in the stomach 3 

(Fig. 5.1D), and 19 hooks lay in the stomach (Fig. 5.1B). Eight hooks were fractured 4 

in the esophagus or stomach (Fig. 5.1D, E). The probability of hooks being 5 

uncorroded, unc
iP , at 7 days after cutting the line was 91 %, whereas it was 0 % at 63 6 

days (Fig. 5.2). The probability of hooks remaining, rem
iP , was also 0 % a 70 days 7 

after cutting the line. Logistic regression analyses showed that the probability of a 8 

hook remaining and being uncorroded decreased with time ( remP̂ : a = 2.666, b = 9 

−0.050, p = 0.001; uncP̂ : a = 1.765, b = −0.080, p < 0.001; Fig. 5.2). The estimated 10 

time before a remaining hook started to corrode was 22.1 days after cutting the line, 11 

and the estimated time for hook evacuation was 53.3 days after cutting the line. 12 

 13 

5-4. Discussion 14 

A total of 77 fish were deep-hooked and released by cutting the line, of which 11 15 

were twice hooked and released by line cutting. After cut-line release, 68.8 % of the 16 

deep-hooked fish were caught again and 93.5 % were recaptured at the end of the 17 

experiment, indicating that the survival rates of fish released by cutting the line are 18 

sufficiently high to be encouraging in a natural environment. Furthermore, the hooks 19 

remaining in the gut corroded and evacuated with time. 20 

The incidence of deep hooking was not related to fork length or sex. However, 21 

since larger fish were more likely to be caught repeatedly (Tsuboi and Morita 2004, 22 

see also Chapter 4 in this dissertation), larger fish tended to be deep hooked more 23 
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often than smaller fish. Some hooks were corroded or fractured in the gut. Hulbert and 1 

Engstrom-Heg (1980) argued that gastric digestion helps to evacuate deep hooks. 2 

However, a retained hook would have an adverse affect on foraging and digestion. 3 

Under artificial conditions, cut-line fish grow less than fish treated in other ways 4 

(Jenkins 2003), whereas there was no negative effect on growth (Mason and Hunt 5 

1967; Hulbert and Engstrom-Heg 1980). In this study, a retained hook might have 6 

prevented foraging and the digestion of irregularly shaped natural food.  7 

The estimated time required for hook evacuation was 53 days, although the time 8 

highly dispersed. I compared the probability of hook evacuation between previous 9 

studies and this study (Table 5.2; Mason and Hunt 1967; Hulbert and Engstrom-Heg 10 

1980; Schisler and Bergersen 1996; Doi et al. 2005). Since evacuation speed in this 11 

study was obviously faster than reported in Mason and Hunt (1967), Hulbert and 12 

Engstrom-Heg (1980), and Doi et al. 2005, wild fish may have a greater potential to 13 

digest or evacuate inedible material under natural conditions than hatchery-reared fish 14 

under artificial conditions. Because the probabilities of hook evacuation were same 15 

level in both masu salmon and white-spotted charr in experimental ponds (Doi et al. 16 

2005), the evacuation speed of this chapter could be applied on other salmonids in 17 

mountain streams. 18 

Avoiding deep hooking perfectly is unable regardless of any fishing tackles and 19 

methods. Cutting the line is as the last refuge to success in catch and release for 20 

deep-hooked fish. Unfortunately, in Japan, most anglers harvest deep-hooked fish, 21 

even illegal-sized fish. Therefore, I need to inform anglers about the effectiveness of 22 

cutting the line.  23 

24 
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Table 5.1. Summary of sample size for each episode. 1 

 2 

Date Purpose Sampling
technique

Time from the cut-line
release to the first day

of recapture (day)
2001/5/22-24 Mark Electrofishing 415
2001/6/1 Catch and Release  Angling 95 5 70
2001/6/8 Catch and Release  Angling 72 5 63
2001/6/15 Catch and Release  Angling 66 13 56
2001/6/22 Catch and Release  Angling 61 4 49
2001/6/29 Catch and Release  Angling 69 15 42
2001/7/6 Catch and Release  Angling 84 12 35
2001/7/13 Catch and Release  Angling 69 7 28
2001/7/20 Catch and Release  Angling 81 7 21
2001/7/27 Catch and Release  Angling 72 8 14
2001/8/3 Catch and Release  Angling 66 12 7
2001/8/10-11 Recapture  Angling 103
2001/8/13-15 Recapture Electrofishing 263

Total number
of marked

fish captured

Deep-
hooked
fish a

 3 
a Deep-hooked fish were released by cutting the line. 4 

 5 

 6 

 7 

Table 5.2. Comparison of the probability of hook evacuation between previous studies 8 

and this study. 9 

 10 

Reference Species Fishing
method

Time peiod
after cutting

the line (days)

Estimated probability
 in this study

same period afterwards (%)
Schisler and Bergersen (1996) Rainbow trout bait fishing 21 25.3 (20 / 79) a 16.6
Doi et al. (2005) White-spotted Charr bait fishing 81 38.9 (7 / 18) 80.0
Doi et al. (2005) Masu salmon bait fishing 81 33.3 (6 / 18) 80.0
Mason and Hunt (1967) Rainbow trout bait fishing 120 58.0 (76 / 131) 96.6
Hulbert and Engstrom-Heg 1980) Brown trout bait fishing 135 76.7 (23 / 30) 98.3

Probability of
hook evacuation

(%)

 11 
a Numbers of evacuated hook and deep-hooked fish in parentheses. 12 

 13 

14 
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Fig. 5.1. X-ray of deep-hooked fish at various times after cut-line release. A: Seven 2 

days after hooking, the hook is embedded in the esophagus; B: Seven and 14 days 3 

afterwards, one is in the esophagus, and the other lies in the stomach; C: Fifty-six days 4 

afterwards, the hook is embedded in the esophagus and the hook eye protrudes from 5 

the gills; D: Fifty-six days afterwards, the hook lies in the stomach and the hook eye 6 

has dropped off; E: Forty-two days afterwards, part of a hook remains in the stomach.7 
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Fig. 5.2. Relationship between time after cutting the line and the probability of the 3 

hook remaining (circles and solid line) and being uncorroded (triangles and dashed 4 

line) in a white-spotted charr gut. The curves are predicted from the logistic regression 5 

model. 6 

7 



 64

6 1 

General Discussion 2 

 3 

In this dissertation, I have documented the magnitude of the impact of fishing on 4 

fish populations and the effectiveness of catch and release fishing for sustaining 5 

resources of stream-dwelling salmonids. In the first experiment (Chapter 2), 6 

white-spotted charr and red-spotted masu salmon were vulnerable to fishing, although 7 

there were differences in the exploitation rates and the relationships between CPUE 8 

and abundance with the species. Consequently, in Chapters 3, I investigated the 9 

effectiveness of catch and release fishing as a management tool to reduce the impact 10 

of fishing on white-spotted charr populations. There was no effect of single catch and 11 

release fishing on growth, survival, and vulnerability to fishing. However, some 12 

deep-hooked fish died before release, which the hooking mortality was 6.7 %. 13 

Therefore, in the subsequent multiple catch and release experiment (Chapter 4 and 5), 14 

I cut the line rather than removing the hook to reduce post-release mortality for 15 

deep-hooked fish. As a result, only one fish (0.14%) died before release. In Chapter 4, 16 

vulnerability to fishing was related to fork length, sex, and the number of experience 17 

of being caught, as an index of individuality. Therefore, caught fish would be valuable 18 

to anglers because these fish would be caught repeatedly if catch and release program 19 

were successful. In Chapter 5, I followed the fate of deep-hooked white-spotted charr 20 

released by cutting the fishing line. The results suggest that the survival rates of fish 21 

released by cutting the line are sufficiently high to be encouraging in a natural 22 

environment. Furthermore, the hooks remaining in the gut corroded and evacuated 23 
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with time. 1 

Recreational fishing in mountain streams 2 

I summarized typical features of recreational fishing in mountain streams. I 3 

proposed two features of recreational fishing; 1. recreational fishermen, unlike purse 4 

seine fishermen, capture individual fish, 2. their capture success depends on foraging 5 

behavior of fish. Therefore, the capture event can affect other free individuals during a 6 

fishing bout. Figure 6.1 presents the relationship between fishing effort (time) and 7 

effective abundance (the number of catchable individuals) in a mountain stream pool. 8 

Effective abundance is initially equal to actual abundance. Thereafter, capture events 9 

decrease the effective abundance both by the capture event itself and by startling other 10 

individuals that are not vulnerable during a fishing bout. In fact, I observed that some 11 

fish went into hiding when another fish was captured.  12 

The number of fish captured can be defined as the product of effective abundance 13 

and catchability (q) at a time t (Fig. 6.2). The number of startled fish increases at a 14 

certain rate (R; not always constant). Values of “q” should vary between species. 15 

Individuality and body size could be inherence factors to fluctuate “q” at individual 16 

level as in Chapter 4. Values of “R” should also vary between species. For example, in 17 

white-spotted charr, the value of R would be negligible, whereas in red-spotted masu 18 

salmon, it would be substantial (Chapter 2). In this manner, fishing success (i.e., 19 

number captured) should be alterative by capture events themselves, because 20 

abundances and fishing grounds in mountain streams are much smaller than lake and 21 

ocean. 22 

Vulnerable to fishing for stream-dwelling salmonids 23 

In Chapter 2, the exploitation rates (total number of fish caught / total abundance) 24 
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of white-spotted charr and red-spotted masu salmon were 17.9 % (46 / 257) and 1 

10.8 % (90 / 830), respectively, even though the field study was conducted in popular 2 

fishing area. In Chapter 3, white-spotted charr were caught by fishing approximately 3 

the same numbers as those caught by electrofishing. In Chapter 4, 74 fish were caught 4 

on average in each fishing episode, which corresponds to 17.7% of all marked fish. 5 

These results indicate that stream-dwelling salmonids, especially white-spotted charr, 6 

were seriously vulnerable to recreational fishing. Dunham et al. (2002) pointed out 7 

that small cutthroat trout populations may actually be extirpated by fishing. Therefore, 8 

the substantial intervention is necessary to sustain and conserve the recreational 9 

fishing resources (Post et al. 2002).  10 

Selectivity due to phenotypic variation and individuality 11 

Generally, recreational fishermen purse the trophy-sized fish (i.e., large fish). 12 

However, random fishing experiments also caught larger fish selectively in Chapter 2, 13 

3, 4. Vulnerability to fishing was related to fork length and growth rate in Chapter 3 14 

and to fork length, sex, and the number of experience of being caught, as an index of 15 

individuality, in Chapter 4. Specifically, the effect of fork length was very strong in 16 

both Chapter 3 and 4. Catch and release fishing is effective from the aspect of 17 

conserving larger fish, which are valuable to anglers as trophy fish, and larger fish are 18 

caught repeatedly, in contrast to smaller individuals. Gruson (1998) proposed that 19 

larger fish should be caught and released to sustain resources. A simulation suggested 20 

that the conservation of larger fish rather than small fish was the most effective 21 

harvesting method for sustaining a fish population (Yokota et al. 2003). Indeed, 22 

significant reductions in the median length and weight of lake trout (S. namaycush) 23 

were observed after lifting the ban on fishing in an Arctic lake, where fishing had been 24 



 67

illegal for a long time (McDonald and Hershey 1989).  1 

Why larger fish were more vulnerable 2 

Many studies have documented that larger fish are more vulnerable to fishing 3 

than smaller fish (e.g., Wilde et al. 2003; Askey et al. 2006; Tsuboi and Endou 2008, 4 

see also Chapter 2). I propose four reasons for the higher vulnerable to fishing of 5 

larger fish in my studies: 1. Physical limits of hook size; 2. Selectivity for prey size; 3. 6 

Hierarchy of dominance; and 4. Size of territory.  7 

Clearly, there is a physical limit to the size of the hook that a fish can take into its 8 

mouths. For 100-mm salmonid fish, the live bait used in my experiments (straight 9 

body length = 22.8 ± 1.7 mm) corresponds to the maximum prey size (Keeley and 10 

Grant 2001). In addition, larger dominant fish feed selectively on larger prey, 11 

compared with the prey size of their subordinates (Nakano 1995b). In stream-dwelling 12 

salmonids, the average prey size is approximately 6 mm for 200-mm fish (Keeley and 13 

Grant 2001); therefore, larger fish tend to eat live bait over 20 mm in body length.  14 

Dominance hierarchies must also play an important role in the positive association 15 

between fish size and fishing vulnerability. In stream-dwelling salmonids, the relative 16 

competitive ability of individuals within a local group is usually determined by body 17 

size (e.g., Fausch 1984; Elliott 1990; Nakano 1995b). In addition, as larger fish have 18 

larger territories (Elliott 1990; Grant and Kramer 1990), they should have more 19 

opportunities to feed on bait (Lewynsky and Bjornn 1987).  20 

Effectiveness of catch and release fishing for sustaining resources 21 

Because the exploitation rates (total number of fish caught / total abundance) 22 

were very high in white-spotted charr and red-spotted masu salmon (Chapter 2), catch 23 

and release fishing can contribute to sustain abundance and relax the impact of 24 
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selective exploitation by fishing, if high survival rates were expected in released 1 

individuals. The results presented in Chapter 3 showed no evidence that catch and 2 

release fishing affects growth, survival, and vulnerability to fishing. Chapter 4 3 

reported that three fish were caught seven times during 11 fishing episodes. Based on 4 

my studies and the reference about the hooking mortality in artificial ponds for 5 

white-spotted charr and masu salmon (Doi et al. 2004), I conclude that catch and 6 

release fishing is effective for sustaining stream-dwelling salmonids populations. 7 

Schill et al. (1986) estimated that cutthroat trout in the Yellowstone River were caught 8 

and released an average of 9.7 times over 45 days. Carline et al. (1991) argued that 9 

catch and release regulations enable recycling of salmonids. 10 

Comparison of hooking mortalities between present and previous studies 11 

I used natural baits in all fishing experiments, which hooking mortality is higher 12 

than that from artificial baits (e.g., lure and fly) (reviewed in Taylor and White 1992; 13 

Muoneke and Childress 1994; Bartholomew and Bohnsack 2005). Consequently, 6.7% 14 

of hooking mortality in white-spotted charr (Chapter 3) was substantially lower than 15 

31.4% of non-anadromous trout by natural bait fishing (reviewed in Taylor and White 16 

1992). As was expected, hooking mortality in previous studies might be overestimated 17 

in lentic water (i.e., artificial ponds), where the incidence of deep hooking increases 18 

because it should be hard to detect the bite of fish.  19 

Doi et al. (2004) reported that there were no differences in hooking mortality 20 

between white-spotted charr and masu salmon in experimental ponds, using 21 

natural-bait fishing. Therefore, my results could be applied on other salmonids in 22 

mountain streams. Additionally, Bartholomew and Bohnsack (2005) analyzed 276 23 

reports of hooking mortality and pointed out that mortality distributions were similar 24 
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for salmonids, marine, and freshwater species. My result could be one of the standards 1 

of hooking mortality in natural habitats. 2 

Minimization of hooking mortality before release 3 

The studies in Chapter 4 and Chapter 5 demonstrated that cutting the line is an 4 

effective release method for deep-hooked fish. Hooking mortality before release was 5 

negligible (0.14%; 1 / 735 fish) in Chapter 4 and was significantly lower than the rate 6 

for the experiments in Chapter 3 (6.7%; 19 / 282), which involved the same equipment 7 

but omitted line cutting (G-test, p < 0.001). In Chapter 5, the hooks remaining after 8 

line cutting tended to be corroded or evacuated. This result would be applicable to 9 

other situations, although the effectiveness of line cutting depends on fishing 10 

conditions, e.g., marine environments, where corrosion rates will differ. Similar 11 

studies are required on other species and in other environments, as well as with other 12 

hook materials. For sustainable recreational fisheries, the innovation and 13 

dissemination of new types of fishing gear will benefit conservation. 14 

Resource management for sustainable recreational fisheries 15 

The results in this dissertation indicate that catch and release regulations can be 16 

an effective management tool for sustaining recreational fisheries, because anglers can 17 

continuously catch fish while conserving the fish populations. However, reducing 18 

hooking mortality is critical in order for conservation-based catch and release 19 

guidelines to ensure the sustainability of recreational fisheries (Cooke and Suski 2005). 20 

If cutting the line were to become popular or were to be adopted as a regulation, 21 

hooking mortality should decrease dramatically. 22 
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Fig. 6.1. Schema depicting the intergradation of the effective abundance during a 4 

fishing experiment in a mountain stream pool.   5 
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