第3章 共通施工

第1節 通 則

3-1-1 一般事項

受注者は、機械設備の工事にあたっては設計図書に示された設備の目的、使用条件に対して機能 を発揮できるよう施工しなければならない。

3-1-2 安全施工

- 1. 受注者は施工にあたって、現場の条件を調査し工事の円滑な履行を図らなければならない。
- 2. 受注者は施工が完了した場合、工事範囲内の清掃等を行ない工事の残存物が放置されていないことを確認しなければならない。

第2節制作

3-2-1 原寸等

受注者は、工作に着手する前に原寸図又は他の方法で図面の不備や製作上、据付上に支障がないことを確かめなければならない。

3-2-2 工作

受注者は、工作にあたって承諾された詳細図に基づき、当該設備の機能と精度に適した工作法を 採用し、材料等に悪影響をおよぼさないよう次の点に留意しなければならない。

- 1. 罫書きを行う場合は、墨線・ポンチ等により行い、タガネを使用してはならない。 なお、SM570級以上の材質にはポンチも使用してはならない。
- 2. 衝撃が作用する部分に使用する鋼板等は、主たる応力方向と圧延方向を一致させるよう加工しなければならない。

なお、主要部材とは、設備を構成する強度部材等の主要な部材をいう。

- 3. 鋼材を切断する場合は、適切な方法により切断をしなければならない。 なお、主要部分を切断する場合は、自動切断により行わなければならない。
- 4. 歯車、軸ジャーナル部、ネジ等は機械加工により機能上必要な精度と表面粗さに仕上げなければならない。
- 5. 主要部分に使用する鋼板をわん曲させる場合は、プレス又はロール機にて一様に曲げなければならない。
- 6. ボルト孔等の孔あけ加工は、適切な方法により正確に行い、必要に応じてリーマ通しを行うものとする。

ただし、レーザ加工は、ステンレス鋼で12mm以上、その他の鋼材で19mm以上の板厚には適用しないものとする。

さらに、押し抜き加工は、主要部材の加工及び板厚12mm以上の二次部材の加工には適用しないものとする。

なお、二次部材とは、設備を構成する主要部材以外の部材をいう。

- 7. 鋳鉄品は、溶接を行ってはならない。 ただし、補修等で必要な場合は、監督員の承諾を得るものとする。
- 8. 部材の接合は、溶接接合、ボルト接合、リベット接合、ネジ接合の方法により行わなければならない。接着材料等による接合、圧接接合(鉄筋を除く)、ろう付等を行う場合は、受注者は、

監督員の承諾を得るものとする。

- 9. ステンレス鋼のグラインダー加工をする場合は、もらい錆防止のために、普通鋼に使用した砥石盤を使用してはならない。
- 10. 機械加工面、溶接開先などの非塗装面は適切な防錆処理を施さなければならない。
- 11. 鋼材の欠陥補修方法は、次の表3-2-1に示すとおりとする。これ以外の場合は監督員の承諾を得るものとする。

表3-2-1

欠陥の種類	補修方法
鋼材の表面傷で、あばた、かき傷	表面はグラインダ仕上げする。局部的に深い傷がある場合は、
など範囲が明瞭なもの	溶接で肉盛りし、グラインダ仕上げする。
鋼材の表面傷で、へげ、われなど	欠陥部をアークエアガウジング等により不良部分を除去した
範囲が不明瞭なもの	のち溶接で肉盛りし、グラインダ仕上げをする。
鋼材端面の層状割れ	板厚の1/4程度の深さにガウジングし、溶接で肉盛りし、グラ
	インダ仕上げをする。

3-2-3 仮組立

受注者は、仮組立にあたって変形を防止するため、次の点に留意しなければならない。

- 1. 仮組立を行う場合は、支持材によって各部材に自重以外の力が掛からないようにしなければならない。
- 2. 仮組立において、現場ボルト接合又は現場リベット接合部はそれぞれの孔数の30%以上のボルト及びドリフトピンを使用して堅固に締結しなければならない。

3-2-4 ステンレス鋼の表面処理

受注者は、ステンレス鋼について工作により不動態化処理が必要となる箇所、及び設計図書に指定された箇所について酸洗い、あるいは電解研磨により表面処理を施すものとする。

また、工事完了までの間、ステンレス鋼表面に軟鋼材の粉塵等が付着しないよう、表面を保護しなければならない。

第3節 溶接

3-3-1 一般事項

1. 施工計画

受注者は、部材の継手性能を満足するよう次の事項を記載した施工計画書を提出したうえで施工しなければならない。

- (1) 鋼材の種類と特性
- (2) 溶接方法、開先形状及び溶接材料の種類と特性
- (3)組合わせる材片の加工・組立精度、溶接部分の清浄度と乾燥状態
- (4) 溶接材料の乾燥状態
- (5)溶接環境と溶接順序
- (6) 溶接部の検査方法
- 2. 作業者資格

受注者は、主要部の溶接に当たっては次の表 3-3-1 に該当する試験、若しくは同等以上の検定

試験に合格した溶接工を従事させなければならない。また、受注者は、その工事に従事する溶接 工の名簿を監督員に提出しなければならない。

(1) 溶接工の資格一覧

表 3-3-1

溶接方法	資格
被覆アーク溶接	溶接する継手の板厚及び溶接姿勢に対応したJIS Z 3801「手溶接技
(手溶接)	術検定における試験方法及び判定基準」の認定試験に合格した者
半自動溶接	溶接する継手の板厚及び溶接姿勢に対応したJIS Z 3841「半自動溶接技術検定における試験方法及び判定基準」の認定試験に合格した者
サブマージアーク溶接 (自動溶接)	溶接する継手の板厚及び溶接姿勢に関係なくJIS Z 3801「手溶接技術検定における試験方法及び判定基準」の「A-2F」の認定試験に合格した者又は同等の技能を有する者
ステンレス鋼の溶接	溶接方法及び溶接姿勢に対応したJIS Z 3821「ステンレス鋼溶接技 術検定における試験方法及び判定基準」の認定試験に合格した者

(2) その他の資格

アルミニウムの溶接には、JIS Z 3811 (アルミニウム溶接技術検定における試験方法及び判定 基準)の資格によるものとし、これら以外の溶接や特殊鋼、非鉄金属等の溶接は、これらに熟練 した溶接工を従事させなければならない。

3. 溶接方法の選定、その他

- (1)受注者は溶接方法、母材の種類等により適合する溶接棒等の溶接材料を使用し、その選定にあたっては、母材の材質、強度、使用条件を考慮しなければならない。
- (2) 受注者は溶接施工にあたっては、次の事項に従わなければならない。
- ①溶接部近傍のペイント、錆、油脂、水分、ミルスケールは完全に除去しなければならない。
- ②材質、板厚、脚長等に応じた電圧・電流を選定すること。
- ③手溶接の溶接姿勢は下向き溶接とする。ただし製作上又は工程上やむを得ない場合には他の溶接姿勢によることができる。
- ④主要部材の工場における板継溶接は、自動又は半自動溶接とする。 なお、溶接線長が短い等の理由により自動又は半自動溶接が採用できない場合には、手溶接を 用いることができる。

4. 溶接環境

受注者は、現場溶接及び工場溶接において、天候の状態、気温、湿度、風速などの環境条件に対して、始業時、作業中を通じてこれらの条件を把握して必要な保護・対策処置を講じなければならない

3-3-2 溶接材料

1. 一般事項

受注者は、溶接材料の選定にあたって、要求継手性能を満足させるため、母材の材質、強度、 その他使用箇所の条件及び溶接施工条件等を考慮し、適切な溶接材料を次の表3-3-2に基づき選 定しなければならない。

分 類		溶接材料規格
被覆アーク溶接棒	JIS Z 3211	軟鋼、高張力鋼及び低温用鋼用被覆アーク溶接棒
恢復ノーク俗族性	JIS Z 3214	耐候性鋼用被覆アーク溶接棒
マグ溶接用ソリッ	JIS Z 3312	軟鋼及び高張力鋼用マグ溶接ソリッドワイヤ
ドワイヤ	JIS Z 3315	耐候性鋼用炭酸ガスアーク溶接ソリッドワイヤ
マグ溶接用フラッ	JIS Z 3313	軟鋼,高張力鋼及び低温用鋼用アーク溶接フラックス入りワイヤ
クス入りワイヤ	JIS Z 3320	耐候性鋼用炭酸ガスアーク溶接フラックス入りワイヤ
サブマージアーク	JIS Z 3183	炭素鋼及び低合金鋼用サブマージアーク溶着金属の品質区分及び 試験方法
溶接材料(注)	JIS Z 3351	炭素鋼及び低合金鋼用サブマージアーク溶接ソリッドワイヤ
	JIS Z 3352	炭素鋼及び低合金鋼用サブマージアーク溶接フラックス
	JIS Z 3221	ステンレス鋼被覆アーク溶接棒
 ステンレス鋼用溶	JIS Z 3321	溶接用ステンレス鋼溶加棒、ソリッドワイヤ及び鋼帯
接材料	JIS Z 3323	ステンレス鋼アーク溶接フラックス入りワイヤ
	JIS Z 3324	ステンレス鋼サブマージアーク溶接ソリッドワイヤ及びフラックス

(注) サブマージアーク溶接材料は、JIS Z 3183 (炭素鋼及び低合金鋼用サブマージアーク溶着金属の品質区分及び試験方法) に基づく、該当するJISの溶接ワイヤとフラックスの組合せによること。

2. 溶接材料

使用する溶接材料は、次の表3-3-3 に基づき、要求される成分、機械的性質等を満足しなければならない。

表 3-3-3 鋼材の組合せによる溶接材料の使用区分

鋼材の組合せ	使用区分					
強度の同じ鋼材を溶接する場	母材と同等若しくはそれ以上の機械的性質を有する溶接材料					
合	中的 C 回等石 してはて40以上の機械的性質を有りる俗族材料					
強度の異なる鋼材を溶接する	 低強度の母材と同等若しくはそれ以上の機械的性質を有する溶接材料					
場合	協照及の身材と同等石してはて40以上の機械の発育を有する俗類材料					
じん性の同じ鋼材を溶接する	母材の要求値と同等若しくはそれ以上のじん性を有する溶接材料					
場合	は何の安水値と同等石してはて40以上のしか性を有する俗域的科					
じん性の異なる鋼材を溶接す	低じん性側の母材の要求値と同等若しくはそれ以上のじん性を有する					
る場合	溶接材料					
耐候性鋼と普通鋼を溶接する	母材と同等若しくはそれ以上の機械的性質、じん性を満足する溶接材					
場合	料					
耐候性鋼と耐候性鋼を溶接す	母材と同等若しくはそれ以上の機械的性質、じん性及び耐候性能を満					
る場合	足する溶接材料					
鋼種の異なる異材溶接又はク	溶接金属成分の希釈に対処し、耐食性能及び割れ対策を満足する溶接					
ラッド鋼の溶接をする場合	材料					

3. 被覆アーク溶接棒

受注者は適用鋼種及び板厚により、被覆アーク溶接棒の使用区分を次の表 3-3-4 に従って選定しなければならい。これ以外の場合は監督員の承諾を得なければならない。

表 3-3-4 被覆アーク溶接棒の使用区分

被覆材の系統	適用鋼種及び板厚(mm)
低水素系以外のアーク溶接棒	SS400、SM400 (t≦25)
	SS400、SM400(25 <t≦40:予熱を行う場合)< td=""></t≦40:予熱を行う場合)<>
低水素系のアーク溶接棒	SS400、SM400 (25 <t≦40:予熱を行なわない場合)< td=""></t≦40:予熱を行なわない場合)<>
	SM490 以上、耐候性鋼(SMA400 他)

(注) 主要部に使用するSS400 は、最大板厚22mm以下とし、溶接施工性について監督員の承諾を得る ものとする。

溶接施工性は、溶接割れ感受性組成 (PCM) で確認することを基本とし、次に示す溶接感受性組成算出式においてPCM が0.30%以下でなければならない。

PCM (%) = C +
$$\frac{\text{Si}}{-}$$
 + $\frac{\text{Mn}}{-}$ + $\frac{\text{Ni}}{-}$ + $\frac{\text{Cr}}{-}$ + $\frac{\text{Mo}}{-}$ + $\frac{\text{Cu}}{-}$ + $\frac{\text{V}}{-}$ + $\frac{\text{SB}}{-}$ + $\frac{\text{SI}}{-}$ + $\frac{\text{SI}}{-}$ + $\frac{\text{Ni}}{-}$ + $\frac{\text{Cr}}{-}$ + $\frac{\text{Mo}}{-}$ + $\frac{\text{Cu}}{-}$ + $\frac{\text{V}}{-}$ + $\frac{\text{SI}}{-}$ + $\frac{\text{SI}}{-}$ + $\frac{\text{SI}}{-}$ + $\frac{\text{SI}}{-}$ + $\frac{\text{CI}}{-}$ +

上記の算出が困難な場合は、炭素等量(Ceq)で確認することも出来るものとし、その場合は、次に示す炭素等量算出式においてCeqが0.40%以下でなければならない。

Ceq (%) =
$$C + \frac{\text{Si Mn}}{-} + \frac{-}{24}$$

4. 被覆アーク溶接棒の乾燥

受注者は、被覆アーク溶接棒を表 3-3-5 に従って乾燥させなければならない。

なお、これ以外の場合は監督員の承諾を得なければならない。

表 3-3-5 被覆アーク溶接棒の乾燥温度と時間

溶接棒の種類	溶接棒の状態	乾燥温度	乾燥時間
低水素系以外の軟鋼用被覆 アーク溶接棒	乾燥 (開封)後12時間以上経過した場合 又は溶接棒が吸湿したおそれがある場合	70~100℃	1 時間以上
低水素系被覆アーク溶接棒	乾燥(開封)後4時間以上経過した場合 又は溶接棒が吸湿したおそれがある場合	300∼ 400°C	1 時間以上
オーステナイト系ステンレ ス鋼の被覆アーク溶接棒	同上	150∼250°C	30~60 分

5. フラックス乾燥

受注者は、サブマージアーク溶接に用いるフラックスを表 3-3-6 に従って乾燥させなければならない。

なお、これ以外の場合は監督員の承諾を得なければならない。

表 3-3-6 フラックスの乾燥の温度と時間

フラックスの種類	乾燥温度	乾燥時間	
溶融フラックス	150 ∼ 200°C	1 時間以上	
ボンドフラックス	200 ∼ 250°C	1時間以上	

3-3-3 溶接施工試験

1. 一般事項

設計図書で示した場合及び監督員の承諾を得て特殊な溶接法を採用する場合は、受注者の責任

と費用負担により実際の施工条件に準じた条件で溶接施工試験を行わなければならない。

ただし、受注者がすでに同種の施工試験又は施工実施の経験を持つ場合、資料の提出・検討により監督員の承諾を得て、溶接施工試験を省略することが出来る。

2. 溶接施工試験

溶接施工試験は、溶接継手の種類に応じて引張試験、曲げ試験、衝撃試験等を次の表 3-3-7 により行うものとする。

なお、これ以外の場合は設計図書によるほか適用する技術基準等によるものとする。

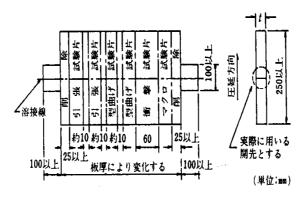


図 3-3-1 突合せ溶接試験、試験体形状及び試験片採取位置

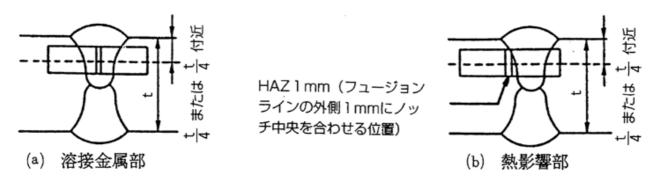


図 3-3-2 衝擊試験片採取位置

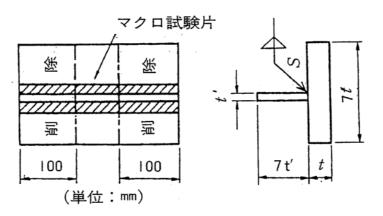
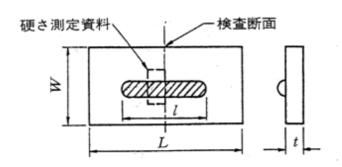



図 3-3-3 すみ肉溶接試験, 試験体形状及び試験片採取位置

(単位:mm)

溶接方法	L	W	l
手溶接	200	150	125
自動溶接	250	190	150

溶接ビートは1層とし、溶接条件は初層の溶接 条件とする。また、硬さ測定資料の採取および 硬さの測定は JIS Z 3101に準ずる。

図 3-3-4 最高硬さ試験, 試験体形状及び試験片採取位置

3-3-4 材片の組合せ精度

表 3-3-7 溶接施工試験の試験方法及び判定基準

試験の	試験項目	溶接方	試験片の形	試験片	試験方法	判定基準
種類		法	状	の個数		
	引張試験	図 3-3-1	IS Z	2	JIS Z	引張強さが母材の規格値以上
		による	3121 1号		2241	
	型曲げ試験		JIS Z	2	JIS Z	原則として、亀裂が生じては
	(19mm 未満裏		3122		3122	ならない
	曲げ)					ただし、いかなる方向にも3
	(19mm 以上側					mmを超える割れまたは著しい
	曲げ					欠陥がなければ合格とする。
	衝擊試験		JIS Z	各部位	JIS Z	溶接金属及び溶接熱影響部で
突合せ	(ステンレス網は		2202 V ノッチ	につき	2242	母材の規格値以上(それぞれ
溶接試	除く)		試験片	3		3個の平均値)
験			(試験片採集	位置は図	3-3-2 12	
			よる)			
	マクロ試験		_	1	JIS G	欠陥があってはならない
					0553	
					に準ずる	
	放射線透過		_	試験片	JIS Z	2類以上
	試験			継手全	3104 又は	
				長	JIS Z106	
すみ肉	マクロ試験	図3-3-3	_	1	JIS G	欠陥があってはならない。
溶接試		による			0553 に	
験					準ずる	
	浸透探傷試		_	試験片	JIS Z	割れ、2 mm超の独立・連続の
	験			継手全	2343-1	線状または円形状、4 mm超の
				長		分散の指示模様は不合格
最高硬	最高硬さ試	図 3-3-4	_	1	JIS G	Hv ≦370
さ試験	験	による			0553 に準	
·					ずる	
スタッ	引張試験	JIS B	JIS B	3	JIS Z	降伏点は 235N /mm ² 以上、引
ド溶接		1198	1198		2241	張強さは 400~550N/mm ² 以
試験						上、伸びは20%以上とする。
						ただし溶接で切れてはいけな
	TL) N = 1 EA	TTC Z	TTO 7		TTO 7	い。
	曲げ試験	JIS Z	JIS Z	3	JIS Z	溶接部に亀裂を生じてはなら
		3145	3145	て、以西わ	3145	ない (フランレフクラッド畑)

⁽注)ステンレスクラッド綱溶接施工試験において、必要な場合、JIS Z 3043 (ステンレスクラッド綱

溶接施工方法の確認試験方法)を適用すること。

1. 厚さが異なる鋼板の突合せ溶接

受注者は、材厚の差が 3mm 以上ある主要部材の突合せ溶接を行う場合は、厚い板に 1/4 以下の 勾配を付けて薄い方の厚さに合わせるものとする。

2. 材片の組合せ精度

受注者は、材片の組合せ精度については次の表 3-3-8 の値としなければならない。

ただし、溶接施工試験によって誤差の許容量が確認された場合は、次の表 3-3-8 の値以上とすることが出来る。

一方、放流管内面等水理的な条件により制約をうける箇所は、板厚方向の材片の偏芯はその条件を考慮しなければならない。

		項	目		組 合 せ 精 度
		ルー	ト間隔の誤差		規定値の±2.0mm (±1.0mm)
	板	区	分	母材板厚	
	厚	水門扉		t≦25	2mm 以下
	方	八八门月		t>25	3mm 以下
	向			t≦20	1mm 以下
突合せ	接りの段	放流管の管胴		20 <t<60< td=""><td>母材板厚の 5%以下</td></t<60<>	母材板厚の 5%以下
溶接				60≦t	3mm 以下
位 以		付属設備や	扮流	t≦10	2mm 以下
		管のガーダ		10 <t< td=""><td>母材板厚の 20% (ただし 3mm 以下)</td></t<>	母材板厚の 20% (ただし 3mm 以下)
	違		· · · · · · · · · · · · · · · · · · ·		
	γ·				
		裏当金を用いる場合の密着度		密着度	0.5mm 以下
			開先角度		規定値±10° (±5°)
すみ肉溶接 材 片 🗷		の 密 着 度		1.0mm 以下	

表 3-3-8 材片の組合せ精度

(注)() 内はサブマージアーク溶接に適用する。

また、ルート間隔 0 の場合の精度は 2.0mm (1.0mm) とする。

3-3-5 予熱

1. 一般事項

部材の溶接において、次により適切に予熱しなければならない。

- (1) 予熱は、溶接線から 10cm 以上、アーク前方 10cm 以上の範囲を行わなければならない。
- (2) 溶接割れ感受性組成 (PCM) により予熱温度を適切に決定しなければならない。

なお、予熱温度は、次の算定式によるものとする。ただし、SS400 (板厚≦22 mm) 及びSM400 (板厚≦25 mm) 及び二次部材の予熱の要否について、PCM値算出が困難な場合、 (Ceq) にて算出出来るものとし、炭素当量 (Ceq) が0.40%を超える場合は、溶接割れ感受性組成 (PCM) を確認し、予熱を行うものとする。

また、PCM が表3-3-9の範囲にある場合は、表3-3-10の予熱温度を適用するものとする。 TP ($^{\circ}$ C) = 1,440PW - 392

$$PW = PCM + \frac{H_{GL}}{-} + \frac{K}{-}$$
 $60 \quad 40000$

溶接金属の拡散性水素量 (HGL) : 低水素系被覆アーク溶接の場合 2m1/100g

サブマージアーク溶接 1ml/100g

ガスシールドアーク溶接の場合 1ml/100g

溶接継ぎ手の拘束度 (K) : 200t N/mm・mm

表 3-3-9 予熱温度の標準を適用する PCM の条件 (%)

鋼種	SM400	SMA400W	SM490	SM520	SMA490W
板厚(mm)			SM490Y	SM570	SMA570W
25 以下	0.24%以下	0.24%以下	0.26%以下	0.26%以下	0.26%以下
25 を超え 50 以下	0.24%以下	0.24%以下	0.26%以下	0.27%以下	0.27%以下
50 を超え 100 以下	0.24%以下	_	0.27%以下	0.29%以下	_

表 3-3-10 予熱温度の標準

		予熱温度(℃)						
鋼種	溶接方法	板厚区分(mm)						
邓 州7里	俗汝刀伝	25 以下	25超~40	40 超~50	50 超~75	75 超~100		
		20 以下	以下	以下	以下	以下		
	低水素系以外の溶接棒に	予熱	40~60					
	よる被覆アーク溶接	なし	10 00					
SM400	低水素系の溶接棒による	予熱	20	20~40	40~60	60~80		
	被覆アーク溶接	なし						
	サブマージアーク溶接ガ	予熱	予熱	20	20~40	40~60		
	スシールドアーク溶接	なし	なし		20 10	10 00		
	低水素系の溶接棒による	予熱	20	20~40	_	_		
SMA400W	被覆アーク溶接	なし						
	サブマージアーク溶接ガ	予熱	予熱	20	_			
	スシールドアーク溶接	なし	なし					
SM490	低水素系の溶接棒による 被覆アーク溶接	20~40	40~60	60~80	80~100	100~120		
SM490Y	サブマージアーク溶接ガ スシールドアーク溶接	予熱 なし	20	20~40	60~80	80~100		
SM520	低水素系の溶接棒による 被覆アーク溶接	20~40	60~80	60~80	100~120	120~140		
SM570	サブマージアーク溶接ガ スシールドアーク溶接	予熱 なし	40~60	40~60	80~100	100~120		
SMA490W	低水素系の溶接棒による 被覆アーク溶接	20~40	60~80	60~80	_	_		
SMA570W	サブマージアーク溶接ガ スシールドアーク溶接	予熱 なし	40~60	40~60	_	_		

⁽注) 予熱なしについては、気温(室内の場合は室温)が5℃以下の場合は20℃以上に予熱する。

- (3) 仮付溶接は、前項で算出した温度+50℃を予熱温度とする。
- (4) 最高硬さ試験において予熱なしで最高硬さ (Hv) が370を超えた場合は、予熱しなければならない。
- (5) 十分な施工性を確保でき、品質に影響がない場合は、監督職員の承諾により予熱を行わなくても良いものとする。
- (6) オーステナイト系及びオーステナイト・フェライト系のステンレス鋼は、予熱・後熱を実施 しないものとする。
- (7) 受注者はマルテンサイト系のステンレス鋼の予熱・後熱を次表3-3-11に従って実施しなければならない。

表3-3-11

分 類	母材	予熱後熱条件
マルテンサイト系	SUS403	・D410では、予熱200~400℃後熱840~870℃を行う。
	SUS410	・D309・D310 では、予熱 100~200℃を行う

3-3-6 溶接施工

- 1. 仮付け溶接
- (1)本溶接の一部となる仮付け溶接は、本溶接と同等の施工方法を行うものとする。 なお、仮付け溶接の品質を本溶接同様に良好なものにしなければならない。
- (2) 仮付け溶接は、本溶接を行う溶接工と同等の資格を持つ者を従事させるものとする。
- (3) 仮付け溶接のすみ肉(又は換算) 脚長は4㎜以上とし、長さは50㎜以上とする。
- (4) 仮付け溶接は、組立終了時までにはスラグを除去し、溶接部表面に割れがない事を確認するものとする。
- 2. 組立

受注者は、部材の組立については補助治具等を有効に利用し、無理のない姿勢で溶接出来るように考慮しなければならない。

3. 溶接施工

(1) 溶接前の部材の清掃と乾燥

溶接線近傍の黒皮、錆、塗料、油などの有害物は、適切に除去しなければならない。 また、水分が付着している場合は、溶接近傍を乾燥しなければならない。

- (2) エンドタブ

 - ②母材がステンレス鋼の場合は、エンドタブは同じ種類のステンレス鋼を使用しなければならない。
 - ③エンドタブは、溶接終了後、材質に応じた切断方法により除去し、その跡をグラインダ仕上げするものとする。
- (3) すみ肉溶接の施工

材片の隅角部で終わるすみ肉溶接は、隅角部をまわして連続的に施工しなければならない。

(4) ステンレスの溶接施工

ステンレス鋼の溶接に使用する溶接材料は、設計で要求されるステンレス鋼の特性が確保出来

るものを使用して施工しなければならない。

4. 異材溶接施工

受注者は、ステンレス鋼と炭素鋼との溶接及びステンレスクラッド鋼の溶接は、耐食性及び割れを考慮し、適切な溶接材料、継手形状、施工法を選定しなければならない。

5. 溶接順序

- (1) 本溶接を行うにあたっては、部材又は継手形状、母材の材質、板厚並び溶接方法、接姿勢等に応じ、ひずみ、変形を極力少なくするよう、溶接順序、溶接速度、溶接電流、アーク電圧等に注意しなければならない。
- (2) 交差溶接継手の溶接にあたっては、一般の溶接継手と同様に、残留応力の軽減、及び溶接熱 履歴による母材の硬化、脆性化を防止出来る溶接工法を採用しなければならない。

3-3-7 後熱処理

1. 一般事項

受注者は、次の事項のいずれかに該当する場合、溶接後炉内加熱による応力除去焼なましを行 わなければならない。

- (1) 490N/mm2以上の強度の鋳鍛鋼品と鋼板を溶接で組立てた部材で、溶接による熱影響部の延性や 切欠じん性が低下し、構造部材として支障がある部材
- (2) 溶接継手が集中して残留応力による変形が発生して機能が損なわれると認められる部材
- (3) 厚板を溶接して組立て、その後機械加工を行い所定の精度が必要な部材
 - 2. 炉中焼なまし

受注者は炉中焼なましを、JIS Z 3700 (又はこれと同等若しくはそれ以上の規格) に従って実施しなければならない。

3. 焼なましが困難な大型構造物

受注者は現地で溶接を行うため応力焼なましが困難な大型構造物の場合、調質を行った 鋼材などで脆性破壊のおそれのない場合等は、前項の条件にかかわらず監督員の承諾を得て他 の方法に変えることが出来る。

4. 応力除去焼なまし

受注者はオーステナイト系及びオーステナイト・フェライト系ステンレス鋼の応力除去焼なま しを行ってはならない。

ただし溶接後機械加工を行い、所定の精度を確保するために焼なましが必要な場合は、次の事項によるものとする。

- (1) 低炭素(炭素含有量0.03%以下) オーステナイト系ステンレス鋼を使用する。
- (2) 応力除去焼なまし後酸洗いを行い、酸化被膜を除去する。
- (3) 焼なましの温度と保持時間は、次のとおりとする。

焼なましの温度:850~900℃

保持時間:厚さ25mmで1時間25mmを超える場合は25mmにつき60分加算

3-3-8 検査方法

受注者は主要な溶接部について、「施設機械工事等施工管理基準」示す検査を実施しなければならない。

3-3-9 欠陥部の補修

1. 一般事項

受注者は欠陥部の補修に当たっては、次の事項に留意しなければならない。

- (1) 補修によって母材に与える影響を検討し、注意深く行わなければならない。
- (2)補修方法は次の表3-3-12に示すとおりとする。これ以外の場合は監督員の承諾を得なければならない。
- (3) 補修溶接のビード長は40mm以上とし、予熱等の配慮を行うものとする。
- (4) ステンレス鋼をアークエアガウジングする場合、ガウジング後グラインダにて炭素を除去し、 補修を行わなければならない。

表3-3-12 欠陥の補修方法

欠陥の種類	補修方法
アークストライク	母材表面に凹みを生じた部分は、溶接肉盛りの後グラインダ仕
	上げする。わずかな痕跡のある程度のものは、グラインダ仕上
	げのみでよい。
仮付け溶接	欠陥部をアークエアガウジング等で除去し、必要であれば再度
	仮付け溶接を行う
溶接われ	われ部分を完全に除去し、発生原因を究明して、それに応じた
	再溶接を行う。
溶接ビード表面のピット	グラインダやアークエアガウジングでその部分を除去し、再溶
	接する。
オーバラップ	グラインダで削り整形する。
溶接ビード表面の凹凸	グラインダ仕上げする。
アンダーカット	ビード溶接した後、グラインダ仕上げする。
内部欠陥	アークエアガウジングでその部分を除去し、再溶接する。
(融合不良・溶込み不良・ブローホ	
ール・スラグ巻込み)	
スタッド溶接の欠陥	ハンマ打撃検査で溶接部の破損したものは完全に除去し、母材
	面を整えたのち再溶接する。
	アンダーカット余盛不足に対する被覆棒での補修溶接は行わ
	ない。

2. 矯正

受注者は溶接によって部材の変形が生じた場合、プレス又はガス炎加熱法によって矯正しなければならない。

ただし、ガス炎加熱方法を用いる場合の加熱時の鋼材表面温度は900°C以下とし、赤熱状態からの水冷は行ってはならない。なお調質鋼については、加熱による機械的性質への影響に配慮して温度管理を行わなければならない。

3. ステンレス鋼の加熱温度

受注者はステンレス鋼、特にオーステナイト系ステンレス鋼を加熱する場合、鋭敏化を起こさない加熱温度で処理しなければならない。

第4節 ボルト接合等

3-4-1 一般事項

1. 添接材

ボルト接合等の添接材は、表 3-4-1 に示す値以上とする。

表 3-4-1 添接材の最小板厚

添接材の種類	片面添接材		両面添接材
例初女们 ♥ 万厘块	主 継 手	その他継手	一般の場合
添接材の厚さ	1. 25t	1.0t	0.6t

(注)表中のtは母材の厚さ(mm)を示す。

2. せん断縁

受注者は、主要接合部板端のせん断縁については板厚の1/4 以上(最小3mm)に相当する幅を削り取らなければならない。ただし、板端が平滑な場合はそのまま使用することが出来る。

3-4-2 普通ボルト接合

1. 一般事項

ボルトは、ねじ部でせん断力を受けさせてはならない。

2. ナットのゆるみ止め

振動等で、ゆるむおそれのある箇所のボルト接合に使用されるナットのゆるみ止めはロックナット、ピン、小ねじ、特殊座金等の確実なものを使用し、ナットのゆるみが設備の機能を損なう又は重大な事故を生じるおそれのある箇所については、ロックナットとピンを併用するなどの二重のゆるみ止めを施すものとする。特に、軸方向に荷重が作用するボルト接合については、ボルト締付時のボルト軸力の管理と接合される部材の剛性に留意しなければならない。

3. 鋳鍛造品の締付け箇所

鋳鍛造品の締付け箇所は、座ぐり等の処置を行うものとする。

4. ボルト孔

ボルト孔は板面に対して垂直にあけるものとし、ボルト孔直径はボルト呼び径に対して適用する技術基準等のクリアランス値を加えたものとする。

5. 接合面

受注書は、接合にあたっては、接合面の異物を除去、清掃し部材相互間が密着するように締付けなければならない。

3-4-3 高力ボルト接合

1. 一般事項

受注者は摩擦接合に使用するボルト・ナット・座金は、JIS B 1186 (摩擦接合用高力六角ボルト・六角ナット・平座金のセット) もしくはこれと同等の規格のものを用いなければならない。

2. 孔径及び精度

ボルトの孔径及び精度は表 3-4-2、表 3-4-3 に示すとおりとする。

表 3-4-2 ボルトの孔径

ボルトの呼び	ボルトの孔径(mm)		
(mm)	摩擦接合	支 圧 接 合	
M20	22. 5	21. 5	
M22	24. 5	23. 5	
M24	26. 5	25. 5	

表 3-4-3 ボルトの孔径の許容量

ボルトの呼び	ボルトの許容量(mm)		
(mm)	摩擦接合	支圧接合	
M20	+0.5	+0.3	
M22	+0.5	+0.3	
M24	+0.5	+0.3	

- (注) 摩擦接合の場合は、1 ボルト群の 20%に対しては、+1.0mm まで認めてもよいものとする。
- 3. 高力ボルト支圧接合

高力ボルト支圧接合の場合は、打込式高力ボルト接合によるものとする。

4. 高力ボルト継手の接合

受注者は高力ボルト継手の接合を摩擦接合とする場合、接合される材片の接触面を 0.4 以上のすべり係数が得られるように次に示す処理を施さなければならない。

ただし、これによらない場合は監督員の承諾を得るものとする。

- (1)接触面を塗装しない場合、接触面は黒皮を除去して粗面とする。材片の締付けにあたっては接触面の浮錆、油、泥などを十分に清掃して取り除く。
- (2)接触面を塗装する場合、表 3-4-4 に示す条件に従い、厚膜形無機ジンクリッチペイントを使用する。

表 3-4- 厚膜形無機ジンクリッチペイントを塗布する場合の条件

項目	条件
接触面片面当たりの最小乾燥塗膜厚	30μm以上
接触面の合計乾燥塗膜厚	90~200 μm以上
乾燥塗膜中の亜鉛含有量	80%以上
亜鉛末の粒径(50%平均粒径)	10μm程度以上

- (3) 亜鉛メッキの場合、すべり係数が 0.4 以上確保できるよう表面処理を行うものとする。
- 5. プライマー塗装

支圧接合の場合は、プライマー塗装の除去を省略することができる。

6. 添接

受注者は、部材と添接板あるいはガセットとを締めつけにより密着させなければならない。 表面にくい違いのでた部材を添接する場合には、表 3-4-5 によるものとする。

表 3-4-5 表面にくい違いがある部材の添接

実際のくい違い量	処理方法	
1mm 以下	処理不要。	
3mm 未満	くい違い量テーパーをつけて落とす。	
3mm 以上	充填材を入れる。	

7. ボルト締付器具等

受注者は、ボルト締付器具等については、定期的に目盛校正を行いその精度が確認されたものを用いなければならない。

なお、目盛校正は締付け施工前に行わなければならない。

また、ボルト締付器具等に振動、衝撃を与えた場合も実施するものとする。

8. ボルトの締付け

受注者はボルト軸力の導入を、ナットをまわして行うものとする。

ただし、やむをえず頭まわしを行う場合は受注者の責任と費用負担によりトルク係数値の変化 を確認しておかなければならない。

9. トルク法

受注者はボルトの締付をトルク法によって行う場合、締付ボルト軸力がボルトに均一に導入されるよう締付トルクを調整しなければならない。

10. 締付ボルト軸力

(1) 受注者は、摩擦接合及び支圧接合のボルトを表 3-4-6 に示すボルト軸力が得られるように締付けなければならない。

ボルトの等級	呼び径	設計ボルト軸力	
	M20	133KN	
F8T	M22	165KN	
	M24	192KN	
F10T	M20	165KN	
	M22	205KN	
	M24	238KN	

表 3-4-6 設計ボルト軸力

- (2)受注者は締付ボルト軸力を、設計ボルト軸力の10%増しにして締付けるものとする。これ以外の場合は監督員の承諾を得なければならない。
- (3) 受注者は、トルシア形高力ボルトの締付ボルトについては、ボルトを締付ける前に一つの製造ロットから 5 組の供試セットを無作為に抽出し、軸力試験を行わなければならない。また、試験の結果の平均値が表 3-4-7 及び表 3-4-8 に示す範囲に入らなければならない。

表 3-4-7 常温時(10℃~30℃)の締付ボルト軸力の平均値

ボルトの	ねじの呼び	1製造ロットのセットの締付	
等級		ボルト軸力の平均値	
	M20	172~202KN	
S10T M22		212~249KN	
	M24	247~290KN	

表 3-4-8 常温以外 (0℃~10℃、30℃~60℃) の締付ボルト軸力の平均値

ボルトの	ねじの呼び	1製造ロットのセットの締付け
等級	ボルト軸力の平均	
	M20	167~211KN
S10T M22 M24		207~261KN
		241~304KN

11. 締付確認

- (1) 受注者は、ボルト締付後、締付確認を速やかに行い、その結果を監督員に提出しなければならない。
- (2) 受注者は、ボルトの締付確認を次のように行うものとする。
 - ①トルク法による場合は、次のいずれかの方法により締付け、確認を行うものとする。
 - ・自動記録計の記録紙により、ボルト全数について行う。
 - ・トルクレンチにより、各ボルト群の10%のボルト本数を標準として締付け確認を行う。
 - ②トルシア形高力ボルトの場合は、全数につきピンテールの切断の確認とマーキングによる 外観確認を行うものとする。
 - ③回転法による場合は、全数につきマーキングによる外観確認を行い、締付角度が次に 規定する範囲内であることを確認するものとする。

回転が不足のものは、所定転角まで増し締付けを実施する。回転角が過大なものについては、新しいボルトセットに取替え締め直しする。

なお、回転法は、F8T、B8T のみに用いるものとする。

- ・ボルト長が径の5倍以下の場合:1/3 回転(120°) ±30°
- ・ボルト長が径の5倍を超える場合:施工条件に一致した予備試験により目標回転

12. 高力ボルトの採用条件

高力ボルトの採用にあたっては、水密に関係が無い場所、錆の発生を防止出来る場所とし、水の浸透する箇所、ボルトが腐食するおそれがある箇所、母材と添接材の合わせ面の防食が困難な 箇所等に使用してはならない。

13. 高力ボルトの規格

高力ボルトを使用する場合は、F8T、F10Tを使用することを原則とし、それ以外の高力ボルトを使用する場合は、監督員の承諾を得るものとする。

14. 溶接と高力ボルト摩擦接合の共用

受注者は、溶接と高力ボルト摩擦接合とを共用する場合、溶接の完了後に高力ボルトを締付けるものとする。なお、溶接に伴う変形については、設計時に考慮するか又は施工時に変形に留意して施工する等の対策を施す事とする。

これ以外の場合は監督職員の承諾を得なければならない。

3-4-4 リベット接合

1. 一般事項

受注者は、リベット接合にあたってはリベット接合に従事した経験を有する者に施工させなければならない。

2. 規格

受注者は、リベット材と母材の組合せについては表 3-4-9 に示すもの、若しくはこれと同等以上の規格のものを使用しなければならない。

 母
 材
 リベット材

 一般構造用圧延鋼材 SS400
 SV330 又は SV400

 溶接構造用圧延鋼材 SMA400
 SW330 又は SV400

 耐候性熱間圧延鋼材 SMA490
 SV400

 耐候性熱間圧延鋼材 SMA490
 SV400

表 3-4-9 リベット材と母材の組合せ

(注)上表によりがたい場合、SWRM15K-M17又はSS400にて曲げ性及び縦圧性その他品質を確認し、SV400規格を満足すれば使用することが出来る。

3. 事前作業

受注者は、リベット打ちに先立ち、鋼材の接触面は清掃し、リベット孔を正しく重ね、仮締め ボルト及びドリフトピン等によって締付けを行わなければならない。

4. リベット打ち

受注者はリベット打ちにあたっては、リベットハンマを使用し、また、あて盤には空気あて盤を使用しなければならない。なお、スペースの制約から空気あて盤を使用できない場合には、人力あて盤を用いるものとする。

5. リベットの欠陥

打ったリベットは、リベット孔を満たし、リベット頭は規定の形状を保ち、ゆるみ、焼きすぎ 及び有害なわれ、剥離などの欠陥があってはならない。

6. 加熱

受注者はリベット全体を900~1,100℃程度に均一に加熱し、スケールなどの付着物を取り除いた後、温度が降下しないうちに手早くリベット締めを行わなければならない。なお、加熱しすぎたリベットを使用してはならない。

7. プライマー塗装

受注者は接合される材片の接触面に、プライマー塗装を行わなければならない。

8. 検査

受注者は、リベット施工完了後、速やかに検査を行い、欠陥のあるリベットは切取り、再びリベット締めをしなければならない。

9. リベットの補修

受注者はゆるいリベットについてはコーキングや冷却後の追い打ちによる補修をしてはならない。不良リベットを切り取る場合には、母材に損傷を与えたり、付近のリベットをゆるませたりするおそれのない方法を採用しなければならない。

第5節 塗 装

3-5-1 一般事項

1. 基準

受注者は、塗装にあたっては、設計図書、本共通仕様書による。これにより難い場合は、監督員

の承諾を得なければならない。

2. 塗り重ね

塗料を塗り重ねる場合は、付着性を考慮し塗料を選定しなければならない。

3. 禁止事項

受注者は、次に示す条件となる場合には塗装を行ってはならない。

- (1) 塗料毎に許容される温度・湿度範囲を外れるとき。
- (2) 塗装表面が結露しているとき、若しくは結露のおそれがあるとき。
- (3) 風が強いとき又は塵埃が多く、かつ防護施設を設けていない場合。
- (4) 塗料の乾燥前に降雪、降雨、降霜若しくは霧のおそれがある屋外作業の場合。
- (5)被塗装面が50℃以上又は5℃以下となるとき。
- (6) その他監督員が不適当と認めた場合。

4. 攪拌

塗料は、開缶後に容器の底部に顔料が沈澱しないように攪拌したうえ、速やかに使用しなければならない。

5. 塗装塗布方法

受注者は、エアレススプレー又はハケ等を使用し、塗り残し、気泡、むら等がなく全面が均一な厚さとなるように塗装しなければならない。

6. 必要膜厚の確保

受注者は、溶接部やボルト接合部分及びその他構造の複雑な部分についても、標準膜厚の 70% 以上を確保しなければならない。

7. 塗装禁止箇所

受注者は、塗装によって機能上支障が生じる箇所(リミットスイッチ類、摺動部、歯車歯面部、ローラ踏面、水密ゴムやワイヤロープ等)については、塗装してはならない。

また、施工にあたってはこれら簡所に塗料が付着しないようにしなければならない。

8. 塗装間隔

受注者は、塗り重ねを行う場合は、適切な塗装間隔を確保しなければならない。

9. 水没

水没するものについては、水没するまでに塗装後定められた養生(乾燥)日数を確保しなければならない。

10. 換気

受注者は、密閉部内面の塗装にあたっては換気を行うとともに、引火による火災の発生を防止しなければならない。

11. 周辺への配慮

受注者は、塗装にあたって、周囲の環境対策、防塵対策を施さなければならない。

12. 塗装色

- (1) 設計図書に定めがない箇所に行う塗装の色については、監督員の承諾を受けなければならない。
- (2) 塗装色は、色彩の効用を効果と安全性の向上に重点をおいた機能配色からの選択を行うものとする。

- (3) 塗装色は、設備の設置環境との調和を図ると共に、快適性への寄与、色彩の公共化を考慮したものとする。
- (4) 上塗りに用いる塗料は、変退色の小さなものでなければならない。

13. 配管系統の塗色

(1)配管の系統が多く、識別が困難な場合は、次の表 3-5-1 に示す塗装を行うこととする。 なお、ステンレス鋼管等の塗装できない配管については塗色と同じ色テープを巻くものとする。

配管系統名	塗装色	
燃料系統	赤	色
作動油系統	黄	色
潤滑油系統	橙	色
空気系統	白	色
排気系統	銀	色
清水系統	淡青	青 色
原水系統	濃	青 色

3-5-2 素地調整

1. 一般事項

受注者は、被塗装物表面の素地調整を行った後、塗装を行わなければならない。なお、素地調整は設計図書に示す素地調整種別に応じて、次の表の仕様を適用しなければならない。

表 3-5-2

素地調整種別	素地調整の内容	施工後の金属面 (ISO 8501-1)
	ブラストによる処理を行い、塗膜、さび、その他付着物を除去し、	(130 8301-1)
1種	正常な金属面とする。	Sa2 1/2 相当
2種	ブラスト又はパワーツールによる処理を行い、塗膜、さび、その	Sa2、St3 相当
2 作	他付着物等をすべて除去する。	382、313 作日
3種	パワーツールによる処理を行い、活膜部以外の塗膜不良部(ふく	St3 相当
3 7里	れ、はがれ、われ等)、さび、その他付着物をすべて除去する。	313 作当
4種	パワーツール等による処理を行い、塗膜表面の劣化物、その他付	St2 相当
	着物を除去する。	3に27日日

2. 新設鋼材の素地調整

受注者は、新設する鋼材の素地調整にあたって、1種ケレンを行わなければならない。

3. 一次プライマー

受注者は、素地調整を行ったときは発錆防止等のため、ただちに金属前処理塗装(以下「一次プライマー」という。)を施さなければならない。

一次プライマーは、エッチングプライマー又はジンクリッチプライマーのいずれかとする。

4. 汚れの除去

受注者は、素地又は前層塗装に付着した油脂、汚れや海塩粒子などの有害物質を塗装の前に入念に除去しなければならない。

5. 有害薬品の使用禁止

受注者は、施工に際し、有害な薬品を用いてはならない。

6. 周辺環境への配慮

現場において素地調整を行う場合は、ブラスト材及び劣化塗膜片などの飛散による周辺環境への影響をおよぼさないよう適切な措置を施すものとする。

7. 塗替塗装時の素地調整

受注者は、塗替塗装時の素地調整面については、速やかに第1層目を塗るものとする。 なお、天候の急変その他の事情で同日中に第1層目を塗り終えることができなかった場合は、 塗り残し面を再度素地調整しなければならない。

3-5-3 工場塗装

1. 一般事項

組立後塗装困難となる部分は、監督員の承諾を得てあらかじめ塗装を完了させるものとする。

2. 現場溶接部分の塗装

現場溶接を行うについては、1次プライマーを除き、熱影響範囲に塗装を行ってはならない。

3. コンクリート接触面の塗装

受注者は、コンクリートとの接触面について塗装を行ってはならない。ただし、コンクリート 付着強度に影響を与えないプライマーはこの限りではない。

4. 開閉装置等の機械仕上げ面の防錆処理

受注者は、開閉装置等の機械仕上げ面に、防錆油等を塗布しなければならない。

5. 非塗装面の防錆処理

受注者は、溶接開先面など非塗装面に、適切な防錆処理を施さなければならない。

ただし、溶接及び塗膜に悪影響を及ぼすおそれのあるものについては溶接及び塗装前に除去しなければならない。なお、受注者は防錆剤仕様については監督員の承諾を得なければならない。

3-5-4 現場塗装

1. 一般事項

受注者は、塗装中に他の構造物や周囲に塗料等を飛散させてはならない。

なお、飛散のおそれがある場合には適切な処置を講ずるものとする。

2. 汚れの除去

受注者は、工場塗装した塗装面に塗り重ねる場合、付着した油脂、汚れや海塩粒子などの有害物質を十分除去しなければならない。

3. 塗装間隔

受注者は、各層の塗装養生期間を適切に保たなければならない。

なお、各塗料の塗装間隔を超えた場合は、塗装の種類に応じて肌荒らし等の処置を施すものとする。

4. 塗膜の補修

受注者は、施工済みの塗膜が損傷した場合、補修しなければならない。

なお、補修塗装を行う場合の塗装仕様及び乾燥時間施工済みの塗装と同一のものとしなければならない。

5. 塩分測定

受注者は、海上輸送部材・海岸部に置かれた部材等、塩分付着の疑いがある場合は、受注者の費用負担により塩分測定を行い、塩分量が100mg/m2 (NaCl 換算)以上付着している場合は、表面の塩分除去を行わなければならない。ただし、塩分量について、鋼橋の場合は50mg/m2 以上とする。

3-5-5 塗装記録

受注者は、塗装が完了後、塗装年月、塗料名記録(名称、規格)、塗装回数、塗料会 社名、施工者名、塗装面積等を記録した塗装記録を監督員の指示した位置に表示しなければならない。

第6節 防 食

3-6-1 溶融亜鉛めっき

1. 水没部分のめっき

受注者は、水没する部分へのめっきをしてはならない。

2. 規格

受注者は、溶融亜鉛めっきの種類、付着量、試験等を JISH 8641 (溶融亜鉛めっき)、JISH 0401 (溶融亜鉛めっき試験方法) 又は同等以上の規定に従って行う。これにより難い場合は、監督員の承諾を得なければならない。

3. めっき作業

受注者は、溶融亜鉛めっき作業を JIS H 8641 (溶融亜鉛めっき) 又はこれらと同等又はこれ以上の規定に従って行わなければならない。

4. 表面の洗浄

受注者は、素材の表面については油脂類を除去し、酸化物(黒皮、赤錆等)を酸洗い又はブラスト等によって完全に除去しなければならない。また、フラックス処理により活性化を促し、良好な亜鉛の付着を図らなければならない。

なお、水素脆性のおそれがある鋼材は酸洗いをしてはならない。

5. 予熱温度

予熱乾燥は約 120 $^{\circ}$ とし、亜鉛(めっき)浴温度は、鋼材の場合約 $430 \sim 470$ $^{\circ}$ 、ボルト・ナットの場合約 $480 \sim 550$ $^{\circ}$ とする。

6. コンクリート埋設

コンクリートに埋設され、かつ付着力を期待される部分は、めっきを施さないものとする。 ただし、施工上やむを得ない場合は、所定の付着力が得られることを確認した技術資料を監督 員に提出し、承諾を得なければならない。

7. 空気だまり、変形の防止

受注者は、めっき槽に漬ける際に空気だまりが出来ない様な設計をしなければならない。 また、密閉された部材や熱変形のおそれのある部材をめっきする場合は空気抜きや、変形防止 材を設ける等の処置を施してめっきしなければならない。

8. 熱変形

受注者は、溶融亜鉛めっきを施工するにあたって、構造物に有害な熱変形を生じさせないよう 設計を行わなればならない。

9. 付着量

付着量は設計図書に示した場合を除き、表 3-6-1 によるものとする。これにより難い場合は、 監督員の承諾を得なければならない。

記号 付着量 (g/m²) HDZ35 350 以上 厚さ 1mm 以上 2mm 以下の鋼材・鋼製品、直径 12mm 以上、ボルト・ ナット及び厚さ 2.3mm を超える座金類。 厚さ 2mm を超え 3mm 以下の鋼材・鋼製品及び鋳鍛造品類。 HDZ40 400 以上 HDZ45 450 以上 厚さ 3mm を超え 5mm 以下の鋼材・鋼製品及び鋳鍛造品類。 HDZ50 500 以上 厚さ 5mm を超える鋼材・鋼製品及び鋳鍛造品類。 HDZ55 550 以上 過酷な腐食環境下で使用される鋼材・鋼製品及び 鋳鍛造品類。

表 3-6-1 溶融亜鉛めっき付着量

備考

- 1. HDZ55 のめっきを要求するものは、素材の厚さ6mm以上であることが望ましい。素材の厚さが6mm未満のものに適用する場合は、事前に協議するものとする。
- 2. 表中、適用例の欄で示す厚さ及び直径は、呼称寸法による。
- 3. 過酷な腐食環境は、海塩粒子濃度の高い海岸、凍結防止剤の散布される地域などをいう。

3-6-2 金属溶射

1. 水没部の金属溶射

受注者は、水没する部分への金属溶射をしてはならない。

2. 規格

受注者は亜鉛、アルミニウム及びそれらの合金溶射は、JIS H 8300(亜鉛、アルミニウム及び それらの合金溶射)、JIS H 9300(溶射作業標準)、の規定によって行うものとする。

これにより難い場合は、監督員の承諾を得なければならない。

3. 作業員

受注者は、溶射工事にあたっては、職業能力開発推進法に基づき実施された金属溶射に関わる 検定に合格したものに作業を行わせなければならない。ただし、受注者は溶射工事の経験を6ヶ 月以上有する作業員で監督員が同等以上の資格を有すると認めた作業員に作業を行なわせるこ とが出来る。

4. 前処理

前処理は第3章3-5-2第1項の1種ケレン(ISO 8051-1 Sa2 1/2 相当以上)とし溶射の種類及び等級に応じてブラスト材等の粒度を選定するものとする。

5. 協議事項

受注者は、溶射にあたっては、次の事項の処理方法について監督員と協議しなければならない。

- (1) ケレン作業又は溶射作業にあたって死角となるもの。
- (2) 作業中破損又は変形のおそれのあるもの。
- (3) 表面状態が著しく不良のもの又は欠陥のあるもの。
- (4) 著しく角張った端部のあるもの。

6. 膜厚

受注者は、設計図書に示した場合を除き、膜厚は 0.15 mm (片面膜厚) 以上としなければならない。

3-6-3 電気防食

1. 一般事項

電気防食は、外部電源方式又は流電陽極方式とし、選定は設計図書による。

2. 防食電位

受注者は、電気防食を施工した場合、基準電極により電位を確認しなければならない。 なお、電位は基準電極に応じてそれぞれ次の表 3-6-2 より低い電位でなければならない。

表 3-6-2 各種金属の防電食位

金属種	防食目標	防食電位(V)
鉄網	部分	-0.60以下
	全面	-0.77以下
アルミニウム合金	部分若しくは全面	-0.87 ~ -1.05
ステンレス鋼	部分若しくは全面	-0.50以下

(注) 1. 電位は、飽和甘汞電極基準値を示す。

2. 人工海水塩化銀電極の場合は、-0.01V を加える。

3. 電極の位置

受注者は、外部電源方式における電源電圧は DC60V 以下にし、電極の位置を被防食体に対し電流分布を良好にするように定めなければならない。

4. 防食対象物の接続

受注者は、外部電源方式の場合、極をとり違えることなく防食対象物に確実に接続しなければならない。

なお、防食対象物の近傍に他の鋼構造物がある場合には、それが腐食しないよう対策を行わな ければならない。

5. 陽極材

流電陽極方式に使用する陽極材はアルミニウム合金、マグネシウム合金、亜鉛合金とし、防食 対象物への取付はボルト又は溶接によるものとする。

なお、陽極材として上記以外のものを用いる場合には、受注者は監督員と協議するものとする。

第7節 輸 送

3-7-1 輸送

1. 一般事項

受注者は、現場への製品及び機材等の搬入に先だち、搬入の方法、経路、時期、現場事情等について施工計画書に記載し、提出しなければならない。

2. 事前協議

受注者は、輸送に先立ち、必要に応じ道路管理者及び所轄警察署と協議するものとする。また、これらの費用は受注者の負担とする。

3. 輸送中の損傷

受注者は、輸送中に製品等に損傷を与えた場合は監督員に速やかに報告した後、指示に従い受注者の責任と費用負担により処置を講じなければならない。

3-7-2 荷造り

1. 一般事項

受注者は、輸送中の製品の損傷、汚損、腐食を防止するために受注者の責任と費用負担により発送前に堅固に荷造りしなければならない。

2. 軸等の輸送

受注者は、軸、歯車、軸受等の輸送にあたっては、傷及び錆を生じさせてはならない。

3. ワイヤーロープ等の輸送

受注者は、ワイヤロープ、ゴムベルト、電線等の輸送にあたっては折り曲げ等により変形を生 じさせてはならない。

4. 計器類の輸送

受注者は、計器、操作盤等の輸送にあたっては緩衝材により保護すると共に雨や塵挨の悪影響 が及ばないようにしなければならない。

5. 鋳物類の輸送

受注者は、特に鋳物類の輸送にあたっては衝撃等により損傷を生じさせてはならない。

6. 海上輸送

受注者は、機器を海上輸送する場合の梱包要領は、JIS Z 0301 (防湿包装方法)、JIS Z 0303 (さび止め包装方法通則) に準拠するものとし、必要な塩害対策及び熱帯処理を処さなければならない。

3-7-3 積卸し

1. 一般事項

受注者は、製品の積卸しにあたっては作業員の安全を確保し、製品に変形、損傷等が生じないようにしなければならない。

2. 積重ね

受注者は、製品を積み重ねする場合は台座、敷材等を使用し製品に損傷を与えてはならない。

3. 積卸し

受注者は、積卸しにあたっては、玉掛け用ワイヤロープによる傷、変形等を生じさせてはならない。

4. 計器、操作盤等の積卸し

受注者は、計器、操作盤等の積卸しにあたっては有害な衝撃を与えてはならない。

5. 資格

受注者は、資格を必要とする作業については、有資格者を従事させるものとする。

3-7-4 仮置き

1. 一般事項

受注者は、工事現場で製品及び材料を仮置きする場合、設計図書に示す指定場所又は監督員と 協議した場所に、整理整頓して仮置しなければならない。

2. 原動機等の仮置き

受注者は、原動機、減速機、電動機、操作盤、計器等は屋内に仮置きしなければならない。ただし、屋外専用として設計されているものはこの限りではない。

3. ワイヤーロープ等の仮置き

受注者は、ワイヤロープ、スピンドル、ベアリング等を仮置きする場合、高温、多湿な場所を

なるべくさけ、保管に際しては油脂を塗布する等の防錆処置を講じなければならない。

4. 未塗装製品の仮置き

受注者は、塗装していない製品を長期間仮置きする場合、シート等により保護しなければならない。

5. 製品の仮置き

受注者は、現場において製品を仮置きする場合、枕木等の上に仮置きしなければならない。

6. 仮置き時の防護

受注者は、製品が仮置き台からの転倒、他部材との接触による損傷がないように受注者の責任と費用負担により防護しなければならない。

7. 損傷等

受注者は、仮置き中に製品及び材料に損傷、汚損、腐食が生じた場合、監督員に報告した後、指示に従い受注者の責任と費用負担による処置を講じなければならない。

3-7-5 保管

受注者は契約期間中、現場での製品、機材等の保管を受注者の責任において行わなければならない。また、保管中の盗難、損失、損傷等を防止しなければならない。

第8節 据 付

3-8-1 一般事項

受注者は、施工計画書に記載した要領に基づき、安全かつ設備機能を損なわないよう据付しなければならない。

また、工事の据付作業にあたっては、品質機能の確保を図るため、同種工事の経験を有する作業者を従事させなければならない。

また、資格を必要とする作業については、有資格者を従事させるものとする。

3-8-2 仮設機材

1. 一般事項

受注者は、据付に必要な仮設資材及び機械器具を、設計図書に示される条件に基づき、受注者 の責任と費用負担により準備しなければならない。

2. 必要電力等

受注者は、据付に必要な電力、光熱、用水等を設計図書に示される条件に基づき、受注者の責任と費用負担により準備しなければならない。

3. 倉庫等

受注者は、倉庫、現場事務所、作業員宿舎、通信設備等については設計図書に示される条件に 基づき、受注者の責任と費用負担により準備しなければならない。

3-8-3 据付

1. 据付基準点

受注者は、据付基準点を設置する場合は、測量作業規程(農林水産省)に基づき設置するものとし、基準となる測量基準点は、設計図書又は監督員の指示により決定するとともに、位置等について監督員の立ち会いのもと確認しなければならない。

なお、据付基準点とは、受注者が設置する設備を据付するために設置する基準点をいう。

2. 精度

受注者は、詳細図及び工場での仮組検査記録等をもとに、規定の許容差内に正確に据付けなければならない。

3. 不可視部分の段階確認

受注者は、コンクリート埋設物、地中埋設物等完成後不可視となる部分ついては不可視となる前に監督員による段階確認を受けなければならない。

なお、段階確認については土木工事共通仕様書第1編第1章1-1-22によるものとする。

4. 重量物の据付

受注者は、重量物の据付にあたってはクレーン等の機材を使用して行うものとし、据付中のものを不安定な状態に放置してはならない。

5. 安全確保

受注者は、据付にあたって、受注者の責任と費用負担により据付架台等を設置し、施工の安全を確保しなければならない。

6. 災害後の作業

受注者は、据付中に地震、強風、大雨等があった場合、再度作業を開始する前に、機材、足場、地盤等の状態及び現場内の環境を点検し安全を確認してから作業を行わなければならない。

7. 埋設金物の据付

受注者は、別途工事のコンクリート構造物に金物を埋設する場合、事前に監督員と協議しなければならない。埋設金物の据付は設計図書に基づいて行わなければならない。

8. コンクリート打設

受注者は、コンクリート打設の際、機器等にコンクリートが付着するおそれのある部分については事前に機器等を保護しなければならない。

9. 養生

受注者は、据付したすべての機器については据付後から工事完了まで、損傷、腐食、汚れ等が 生じないように養生して注意を払わなければならない。

第9節配管

3-9-1 一般事項

1. 配管材料

受注者は、配管材料の選定については流体の種類、使用環境、施工方法に応じたものを選ばなければならない。

2. 配管位置等

受注者は、配管図等に基づいて、配管の位置、勾配、接続及び支持を正確に行わなければならない。また、施工後、機器の運転に伴う振動等の影響を受ないように考慮しなければならない。

3. 管の切断

受注者は、管の切断にあたって、断面が変化しないように管軸心に対して直角に切断し、切口は平滑に仕上げ、管を接合するまえに内部を点検し、削りくず等の異物のないことを確認しなければならない。

なお、配管の施工を一時中断する場合は、管や機器の内部に異物が混入しないようにカバーや

キャップ等で保護しなければならない。

4. 管の接合

受注者は、管の接合についてはねじ接合、フランジ接合又は溶接接合で行い、ねじ接合は JIS 等に準拠したものとし、フランジ接合は適切なパッキン等を使用してボルトを均等に締め付けて 行わなければならない。ステンレス鋼管の溶接接合は、TIG 溶接法等適切な方法によらなければ ならない。

なお、油圧配管用にホースを使用する場合は、ソケット接合によってもよいものとする。

5. 継手

受注者は、配管の立上がり部、管路途中の機器の取付両端等には、フランジ継手又はユニオン 継手を設け、管及び機器の取外しが容易なものにしなければならない。

6. 凍結のおそれがある配管

受注者は、凍結のおそれのある配管については、設計図書に基づき保温又は配管内の排水等が できるようにしなければならない。

7. 変位等の対策

受注者は、振動、温度変化、不等沈下及び相対変位が予測される箇所については、変位等に対策を施さなければならない。なお、不等沈下等、受注者が変位量を予測できない箇所の対策については設計図書によるものとする。

8. 水密性の確保

受注者は、水密性が要求されるコンクリート壁面等を貫通する配管は、シーリング材等により、 間隙を充填しなければならない。

9. 防火壁

受注者は、防火壁等を貫通する配管の間隙をモルタル又はロックウール等の不燃材料で充填しなければならない。

10. 高熱を発する排気管

受注者は、高熱を発する排気管については壁貫通部の間隙を断熱材料で充填し、壁に悪影響を 与えないようにすると共に、高熱部に対して容易に触れるおそれのないように処置を施し配管し なければならない。

11. 油配管

油配管は、煙突などの火気部、高熱部等に対して悪影響を受けない間隔を保持するものとする。

12. 防護対策、隔壁

受注者は、配管が電気配線と同一近接または交差する場合、電気設備に関する基準を定める省令(以下「電気設備技術基準」という)第204条に従って防護対策を施さなければならない。なお、電気配線と同一ピット内に配管する場合は、配線との間に鋼板等による隔壁を設けるものとする。

ただし、燃料配管と電気配線を同一ピット内に配管する場合は、燃料配管を下に配置し、配線 との間に鋼板等の隔壁を設けなければならない。

13. 横走り配管及び立管の布設

受注者は、横走り配管には排水等の可能な勾配を設け、立管には中間振れ止めを施し、最下部を固定しなければならない。

なお、中間振れ止めは伸縮を可能にするものとする。

14. 油圧配管用の管材

受注者は、油圧配管用の管材はステンレス鋼管とし、現場での切断、曲げ加工、溶接等が終了後、酸洗いを行い、配管完了後にフラッシング油で配管内を洗浄しなければならない。なお、工場において酸洗いを行って現場に納入し、現場にて、切断、曲げ加工、溶接等を行わない油圧配管については、酸洗いを省略できる。

15. 圧力配管

受注者は、油圧配管等の圧力配管を施工する場合は、配管終了後、定格圧力の 1.5 倍以上の圧力で 2 分間の耐圧試験を行い、漏れがないことを確認するものとする。

ただし、油圧シリンダ等のアクチュエータについては、工場における単体の耐圧試験を行うものとし、現地据付後に耐圧試験を実施してはならない。

16. 色区分

受注者は、配管を第3章3-5-1第13項に規定された塗色により色区分するとともに通常の状態における流れ方向および行き先を適当な間隔で表示しなければならない。また、管路のバルブ等には通常における「常時開」「常時閉」等の状態表示の名札を付けるものとする。

3-9-2 地中配管

1. 一般事項

地中埋設管はステンレス鋼管とし、土質条件等を考慮して選定する。炭素鋼鋼管を使用する場合は、昭和 49 年自治省告示第 99 号(製造所及び取扱所の位置、構造及び設備の技術上の基準の細目を定める告示) 第 3 条に規定する塗覆装を行うものとする。

2. 衝擊防護

受注者は、埋設管の分岐部、曲がり部などの衝撃を受けやすい箇所には、必要に応じてコンクリート若しくは他の方法で衝撃防護を行わなければならない。

3. ねじ接合

受注者は、地中埋設の油配管でねじ接合を行う場合は、継手部に適切な点検口を設けなければならない。

4. 地中配管

受注者は、地中配管を行う場合には、次の事項に留意して掘削・埋戻しを行わなければならない。

- (1) 掘削幅は、地中配管の施工が可能な最小幅とする。
- (2) 受注者は、掘削を所定の深さまで行った後、転石や突起物を取除き突固めを行うと共に、掘削土を埋戻す場合は下層土は下層に、上層土は上層とし埋設表示テープを敷設し埋戻しを行わなければならない。ただし、コンクリート巻立て又はU字側溝等のコンクリート二次製品等で保護される場合は、この限りではない。

なお、掘削土を埋戻しに使用しない場合は監督員の承諾を得た良質土により行わなければならない。

- (3) 埋戻しは、1層の仕上り厚さが30cm毎となるよう均一に締固めて、順次行わなければならない。
- (4) 受注者は、掘削にあたって埋設物を発見した場合は、速やかに監督員と処置方法について協

議しなければならない。

(5) 受注者は、道路の掘削工事の施工にあたっては、交通の安全につき道路管理者及び所轄警察署と協議すると共に、関係法令に基づき、安全対策を講じなければならない。

なお、舗装の切取りはカッター等により行い周囲に損傷を与えないようにすると共に、埋設 後は原形に復旧しなければならない。

3-9-3 露出配管

1. 一般事項

露出配管は、取付取外しに適した各配管の相互間隔を保つと共に、支持金物、台座等により床、 壁面より同様な間隔を保ち整然と配管するものとする。

また、配管数が多い場合は同系統の配管をできるだけ集約させるものとする。

2. 状態表示

受注者は、露出配管を第3章3-5-1第15項に規定された塗色により色区分すると共に通常の状態における流れ方向及び行き先を適当な間隔で表示しなければならない。

また、管路のバルブ等には通常における「常時開」「常時閉」等の状態表示の名札を付けるものとする。

3. 支持間隔

受注者は、露出配管の支持間隔を次の表 3-9-1 のとおりにしなければならない。

また、吊り金具で支持する場合は地震等により脱落のないように支持し、床上配管は台座等で 支持するものとする。

呼び径 (A)		(A)	20 以下	25~40	50~80	100 ~ 150	200 以上
間	隔	鋼管	1.8以下	2.0以下	3.0以下	4.0以下	5.0以下
间 闸	銅管	1.0以下	_	_	_	_	

表 3-9-1 露出配管の支持間隔 (単位:m)

3-9-4 ピット内配管

1. 一般事項

受注者は、配管支持金物を、排水に支障のないようピット側壁又は底部に設けなければならない。また、ピットには取外し可能な蓋を設置しなければならない。

2. 配管方法

受注者は、ピット内では管を交錯させないように配管し、ピットより立上げる場合は鉛直に立上げなければならない。

3. 排水管

受注者は、ピットには、排水を考慮して勾配をつけ排水管を設置しなければならない。また、 必要に応じて集水枡を設けなければならない。

4. ピット施工

受注者は、ピット施工にあたっては型わく等を使用して施工し、設計図書に示された場合には モルタル仕上を行わなければならない。

5. 支持間隔

受注者は、ピット内配管の支持間隔を第3章3-9-3第3項のとおりにしなければならない。

第10節 電気配線

3-10-1 一般事項

1. 一般事項

受注者は、関係法令に基づいて電気配線を行わなければならない。

2. 離隔距離

受注者は、信号用ケーブルと動力用ケーブルを同一ピット内等に設ける場合は定められた離隔 距離を確保して布設するものとする。やむを得ず接近する場合は適宜防護対策を施さなければな らない。

なお、外部の温度が 50℃以上となる排気管等の発熱部と配線とは 15 cm以上離ものとする。

3. 電線の接続

受注者は、次により電線の接続を行わなければならない。

(1) 電線の接続は、ジョイントボックス等で行い、管又はフロアダクト等の内部で接続してはならない。

なお、機器と操作盤等の途中配線では接続しないものとする。

- (2) 電線の接続部分は、電線の被覆部分と同等以上の絶縁効力があるように処理するものとする。
- (3) 電線相互の接続は、圧着接続端子等の接続金具を使用して行うものとする。
- 4. 電線と機器の接続

受注者は、次により電線と機器の接続を行わなければならない。

- (1)接続は、振動等により緩むおそれのある場合、スプリングワッシャ等を用いた対策をとるものとする。
- (2) 電線と機器端子の接続点は、電気的及び機械的に適切な工具を使用し確実に行い、接続点に張力が加わらないよう接続するものとする。
- (3)機器端子が押ねじ形、クランプ形、押締形、又はこれに類する構造の場合は端子の構造に適した太さの電線を1本接続するものとする。

ただし、1 端子に 2 本以上の電線を接続できる構造の端子には、2 本まで接続してよいものとする。

- (4)巻き締め構造の端子には、電線をねじのまわりに3/4周以上1周以下巻き付けるものとする。
- (5) コード吊り金具は、コードファスナを使用するか、適当な張力止めを行い端子に直接重量がかからないようにする。
- (6) 電動機接続箇所の立上部の短小な配管には、可とう電線管を用いるものとする。 ただし、接続用端子を付属していないもの及びエントランスキャップ以後などの配線はテープ巻きとする。
- (7) 水中電動機に付属するキャブタイヤケーブルの接続点は、水気のないところに設けるものとする。
- 5. ビニル電線の色別

受注者は、ビニル電線を使用する場合は、次の表 3-10-1 のとおり色別しなければならない。

(1)接地線は、緑色とする。また、色別困難な場合は、端子部においてビニルキャップ等で識別してもよいものとする。

なお、ビニル電線以外でもこの色別を準用するものとする。

表 3-10-1 ビニル電線の色別

	配線方式(相線式)														
	交流											直	流		
単	単相2線式 単相3線式 三相3線式 三相4線式								直流	2線 t					
第	接	非	第	中	第	第	接	非	第	第	第	第	中	_	+
1	地	接	1	性	2	1	地	接	3	1	2	3	性	N	Р
相	側	地	相	相	相	相	側	地	相	相	相	相	相		
	第	第					第	第							
	2	2					2	2							
	相	相					相	相							
赤	青	青	赤	黒	青	赤	白	白	青	赤	白	青	黒	青	赤

- (2) 電線を分岐する場合は分岐前の色別による。ただし、分電盤2次側の単相2線式回路の電圧 側の色は、赤、黒、いずれかの色に統一してもよい。
- 6. 絶縁抵抗

絶縁抵抗及び絶縁耐力は次によるものとする。

(1)低圧の電線路における電線相互間及び電線と大地間の絶縁抵抗値は、500V 絶縁抵抗計で測定し、開閉器などで区切ることのできる電路ごとに表 3-10-2 に掲げ値以上とする。

表 3-10-2 使用電圧区分による絶縁抵抗値

	電路の使用電圧の区分					
	対地電圧(接地式電路においては電線と大地との間の電	0.1M Ω				
300V以下	圧、非接地式電路においては電線間の電圧をいう。以下同					
	じ。)が 150V 以下の場合。					
	その他の場合	0. 1ΜΩ				
300V を超えるもの		0.4M Ω				

(2) 高圧の屋内配線、架空配線及び地中配線に対する絶縁耐力は、電線相互間及び電線と大地間に最大使用電圧の1.5倍の試験電圧を加え、連続して10分間これに耐えることとする。ただし、 交流用ケーブルにおいては交流による試験電圧の2倍の直流電圧によって試験を行ってもよい。

7. 名札

受注者は、ケーブルの両端及び必要な箇所にプラスチック製等の名札を取付け、回路の種別や 行先などを表示しなければならない。

8. 支持間隔

受注者は、ケーブルを構造物に沿って配線する場合にはケーブルに適合するサドルなどで被覆を損傷しないように堅固に取付け、その支持間隔は2m以下としなければならない。

ただし、側面、下面及び人の触れるおそれのある場所では1m以下としなければならない。

9. ケーブルの折り曲げ

受注者は、ケーブルを曲げる場合には被覆が損傷しないようにし、その屈曲半径は高圧の場合ケーブル径の8倍(単芯ケーブルの場合10倍)以上、低圧の場合6倍(単芯ケーブルの場合8倍)

以上とし、光ケーブルの場合は3-10-9 1. (2) による。

10. ケーブルの保護

受注者は、ケーブルが構造物を貫通する場合には合成樹脂等でケーブルを保護しなければならない。

また、管が移動しないように管止めも施さなければならない。

3-10-2 金属管配線

1. 一般事項

金属管配線に用いる電線は、絶縁電線等(屋外用ビニル電線は除く)とし、金属管の種類は屋内配線では JIS C 8305 (薄鋼電線管)の薄鋼電線管、屋外配線又はコンクリート埋設部では JIS C 8305 (厚鋼電線管)の厚鋼電線管を使用するものとする。

2. 電線管

電線管は、内線規程による。端口及び内面は電線の被覆を損傷しないようになめらかなものとする。

3. プルボックス等

受注者は、電線管の配線が 1 区間で 30m を超える場合又は技術上必要と認められる箇所には、 プルボックス又はジョイントボックス等を設けなければならない。

4. 電線管の固定

受注者は、管を固定する場合は、サドル又はハンガ等の支持金物により取付、その支持間隔は 2m以下としなければならない。なお、管端、管相互又は管とボックス等の接続点では、管端、接 続点に近い個所も固定しなければならない。

5. 管の曲げ半径

管の曲げ半径は、管内径の6倍以上とし、曲げ角度は90度を超えてはならないものとする。 また、1区間の屈曲箇所は4ヶ所以下とし、曲げ角度の合計が270度を超えてはならない。270度を超える場合には、プルボックス又はジョイントボックスを設けなければならない。

6. 予備配線

受注者は、予備配管に通線用のビニル被覆鉄線(心線径 1.6mm 以上)を入れておかなければならない。

7. ボンディング

受注者は、接地を施す配管とボックス(ねじ込形を除く)との接続個所には、電動機容量又は 配線用しゃ断器などの定格電流に応じた太さの裸軟銅線によるボンディングを行わなければな らない。

なお、ボンド線の太さは表 3-10-3 及び表 3-10-4 に示す値のものを使用する。

配線用しゃ断器などの定格電流(A)	ボンド線の太さ
100 以下	2.0mm 以上
225 以下	5.5mm ² 以上
600 以下	14mm ² 以上

表 3-10-3 ボンド線の太さ

表 3-10-4 電動機用配管のボンド線の太さ

200V級電動機	400V級電動機	ボンド線の太さ
7.5kW 以下	15kW 以下	2.0mm 以上
22kW 以下	45kW 以下	5.5mm ² 以上
37kW 以下	75kW 以下	14mm ² 以上

8. 接地工事

受注者は、金属配管路の接地工事については、関係法令にしたがって行なわなければならない。

9. 支持間隔

垂直に布設する管路内の電線は、ボックス等により表 3-10-5 に示す間隔で支持するものとする。

次 0 10 0 王臣日	
電線の太さ (mm ²)	支持間隔(m)
38 以下	30 以下
100以下	25 以下
150 以下	20 以下
250 以下	15 以下
250 超過	12 以下

表 3-10-5 垂直管路内の電線支持間隔

10. 管の埋設物等

受注者は、設計図書により管の埋設又は貫通施工を行わなければならないが、障害物がある場合などは監督員と協議しなければならない。

11. コンクリートに埋設する管

受注者は、コンクリートに埋設する管には、管端にパイプキャップ、ブッシングキャップ等を 用いて水気、塵埃等の進入を防ぐと共に、コンクリート打設後に型枠を取り外した後、速やかに 管路の清掃及び導通調べを行わなければならない。

12. 管の切り口

受注者は、管の切り口をリーマ等で平滑に仕上げ、雨のかかる場所では管端を下向きに曲げ雨 水が侵入しないようにしなければならない。

また、受注者は湿気、水分のある場所に布設する配管及びジョイントボックス等に防湿又は防水処理を施さなければならない。

3-10-3 合成樹脂管配線

1. 一般事項

コンクリート埋設部は、JIS C 8430 (耐衝撃性硬質ビニル電線管)、地中埋設部は JIS C3653 (電力用ケーブルの地中埋設の施工方法) に適用する電線管を使用するものとする。

2. 管の固定

受注者は、管を固定する場合はサドル等の支持金物により取付、その支持間隔は 1.5m 以下と しなければならない。

3. コンクリート埋設管

受注者は、管をコンクリートに埋設する場合、打設時の温度差による伸縮を考慮して伸縮カップリングを設けなければならない。

4. コンクリート埋設以外の管路

受注者は、コンクリート埋設管以外の管路においても伸縮の生じる箇所に伸縮カップリングを 設けるものとし、伸縮カップリング部分はルーズ接続しなければならない。

5. 管相互接続

受注者は、管相互の接続はカップリングにより行うものとし、専用の接着材を用いて完全に接続しなければならない。

6. その他

その他については、第3章3-10-2に準じて行うものとする。

3-10-4 ケーブル配線

1. 一般事項

ケーブルラックの水平支持間隔は、鋼製では 2m、アルミ製では 1.5m を基本とする。

ただし、直接部と直接部以外の接続点は接続に近い箇所で支持する。

また、受注者はケーブルラック又は支持する金物は、天井及び壁などの構造体にラック本体及 び布設されるケーブルなどの荷重に耐える強度を有する吊りボルト又はアンカーボルトを用い て取付るものとする。

2. 垂直支持間隔

ケーブルラックの垂直支持間隔は3m以下とする。

ただし、配線室内などの部分は、6m以下の範囲内で各階支持としてもよいものとする。

3. ボンディング

受注者は、ケーブルラックの端部及び自在形屈曲部に第3章3-10-2第7項に準じたボンディングを行い、電気的に接続するものとする。

4. ケーブルの布設

受注者は、ケーブルをケーブルラック上に絡み合うことなく布設し、水平部では 3m 以下、垂直部では 1.5m 以下の間隔毎に結束してケーブルラックにとめなければならない。

3-10-5 地中配線

1. 一般事項

地中配線の電線はケーブルとし、配線は管路式、直接埋設式又は暗渠式によるものとし、選定は設計図書によるものとする。

2. 地中配管

受注者は、地中配線を行う場合には、次の事項に留意して掘削・埋戻しを行わなければならない。

- (1) 掘削幅は、地中配線の施工が可能な最小幅とする。
- (2) 受注者は、所定の深さまで行った後、転石や突起物を除いて突固めを行うとともに、掘削削 土を埋戻す場合は、下層土は下層に、上層土は上層とし、埋設表示テープを敷設し埋戻しを行 わなければならない。ただし、コンクリート巻立て又はU字側溝等のコンクリート二次製品等 で保護される場合は、この限りではない。

なお、掘削土を埋戻しに使用しない場合は監督員の承諾を得た良質土により行わなければならない。

(3) 埋戻しは、1層の仕上り厚さが 30cm 毎となるよう均一に締固めて、順次行わなければならない。

- (4) 受注者は、掘削にあたって埋設物を発見した場合は、速やかに監督員と処置方法について協議しなければならない。
- (5) 道路の掘削工事の施工にあたっては、交通の安全につき、道路管理者及び所轄警察署と協議 すると共に、関係法令に基づき、安全対策を講じなければならない。

なお、舗装の切取りはカッター等により行い、周囲に損傷を与えないようにすると共に、埋設 後は原形に復旧しなければならない。

3. ケーブルの接続

受注者は、ケーブルの接続を行う場合には防水性のある接続材を用いハンドホール又はマンホールで行うものとし、ハンドホール内等ではケーブルには余裕をもたせなければならない。

また、受注者はハンドホール等の要所でケーブルにプラスティック製等の名札を取付、回路の 種別、行き先等を表示しなければならない。

4. ハンドホール等

受注者は、設計図書にて施工を指示されている場合、ハンドホール、マンホールに関して次の 施工を行わなければならない。

- (1) ハンドホール、マンホールの大きさ及び構造は、ケーブルの引き入れ及び曲げに適したものとする。その構造は鉄筋コンクリート造りとし、その中の水を排除できるものとし、マンホール首部はモルタル仕上げとする。
- (2)マンホールの壁には、ケーブル及び接続部等を支える支持金物を堅固に取付支金物には木製又は陶製の枕を設ける。
- (3) マンホール蓋は、鋳鉄製で水の侵入しがたい構造とし、車両その他重量物の圧力を受けるお それのある場所では、それに耐える強度を有するものとする。マンホール蓋、ハンドホール蓋 にはそれぞれに用途、その他の必要事項をペンキ等で表示するものとする。
- (4) 深さ 1.4m を超えるマンホールを施設したときは、昇降用金属梯子を 1 施設に対して 1 台具 備するものとする。ただし、タラップ付マンホールの場合は必要ないものとする。

5. 管路式

受注者は、管路式の場合の施工について次を遵守しなければならない。

- (1) 地中埋設の管は、曲げてはならない。やむを得ず曲げる場合には監督員の指示により埋設管 の位置を表示するマークを地表に埋め込まなければならない。
- (2) 配管には防錆処理を行うものとする。
- (3) ケーブルの引き入れに先立ち管内を清掃し、ケーブルは丁寧に引き入れ、管端部はケーブル を損傷しないように保護する。

6. 直接埋設式

受注者は、直接埋設式の場合の施工について次の事項を遵守しなければならない。

- (1) 地面を掘削し、トラフをすき間のないように敷きならべて、その中にケーブルを布設し、トラフ内には川砂又は、山砂を充填する。
- (2) 合成樹脂管を布設する場合は、掘削後、上記(1)に準じ川砂又は山砂を均一に 50 mm程度敷ならした後に布設し、管の上部を同材質の砂を用いて締固めしければならない。
- (3) 管又はトラフの土かぶりは0.6m以上とし、車輌その他重量物の圧力を受けるおそれのある場所は1.2m以上とする。

3-10-6 プルボックス

1. 一般事項

プルボックス又は支持する金物は、天井スラブ及び壁などの構造体に、吊りボルト又はアンカーボルトを用いて取付る物とする。

2. 支持点数

プルボックスの支持点数は、4箇所以上とする。

ただし、長辺の長さが300mm以下のものは、2箇所としてもよい。

3-10-7 電力柱及び通信柱

- 1. 建柱
- (1) 鉄筋コンクリート柱又は鋼管を柱体とする鉄柱(以下「鋼管柱」という)で、末口19cm以下及 び設計荷重が6.87N以下の架空電線路の支持物の根入れは、全長が15m以下の場合は全長の 1/6 以上、15mを越え16m以下の場合は、2.5m以上とする。

ただし、傾斜地、岩盤などでは、根入れ長さを適宜増減してもよい。

- (2) 水田その他地盤が軟弱な箇所では、特に堅牢な 1.2m 以上の根かせを使用し、その埋設深さは、地下 0.3m 以上とする。
- (3) コンクリート根かせは、径 12mm 以上の亜鉛めっき U ボルトで締め付けるものとする。
- (4) 建柱場所付近に支障物がある場合は、損傷を与えないようにしなければならない
- (5)鋼板組立柱は、太い部材から組立を行うものとし、接合方法に注意し、連結するものとする。
- (6) 鋼板組立柱には、以下の場合に底板を使用する。

ただし、コンクリート基礎を使用した場合は、この限りではない。

- ① 引留柱及び角度柱で支線を取付る場合
- ② 変圧器などの重量物を取付る場合
- ③ 地盤が湿地、その他軟弱な場合
- (7)鋼板組立柱の地表面から2.4m以上の位置に足場ボルトを取付けるものとする。
- (8) 鋼板組立柱の根入れは1段目の地表面高まで、内部に砂又は生コンクリートを充填するものとする。
- (9) 架空電線路の支持物は、足場金具及び名札(建設年月日、管理番号、その他指定事項記載) を設けるものとする。

なお、足場金具等は、道路に平行に取付けるものとし、地上2.6mの箇所により、低圧架空線では最下部電線の下方約1.2m、高圧架空線では高圧用アームの下方約1.2mの箇所まで、順次柱の両側に交互に取付け、最上部は2本取付けるものとする。

(10) H柱を構成する支持物材料は、同一材料を使用するものとする。

2. 支線

- (1) 支線の安全率は2.5 以上とし、許容引張荷重は4.31kN 以上とする。
- (2) 支線は、素線を3条以上より合わせたものとし、素線には直径2.0mm以上で、かつ引張強さが686N/mm²以上の亜鉛めっき鋼線を使用する。また、支線を支線物に取付るには、適合した支線バンドを用いて取付るものとする。
- (3) 支線の根かせの埋設深さは本柱根入れの深さによるものとする。
- (4) 高圧架空電線路に使用する支線には玉がいしを取付、その位置は支線は切断された場合にも

地上2.5m以上となる箇所とする。

(5) 人及び車両の交通に支障のおそれがある支線には、支線ガードを設けるものとする。

3. 腕金

- (1) 腕金は、これに架線する電線の太さ及び条数に適合するものとする。 なお、腕金にがいしを取付る場合は、必要に応じ亜鉛めっきを施したがいし振止用金具を使 用するものとする。
- (2) 腕金は、1回線に1本設けるものとし、負荷側に取付るものとする。 なお、電線引留柱においては、鋼板組立柱にあっては電線の張力側、その他の電柱にあって は電線の張力の反対側とする。
- (3) 腕金は、電線路の内角が大きい場合は、電柱をはさみ2本抱き合わせとし、内角が小さい場合は、両方向に対し別々に設けるものとする。
- (4) 腕金の取付は、高圧の高いものから、また同一電圧のものは、遠方へ送電するものから順次 上から下へ取付るものとする。
- (5) 腕金相互の間隔は、上下段の電線がスリートジャンプにより混触するのを防止するため、高 圧線相互間及び高圧線と低圧線は 0.8m、低圧線相互間は 0.6m を標準とする。 ただし、最上部の腕金の取付位置は柱頭より 0.25m 下がりとする。
- (6) 腕金は、亜鉛めっきボルトなどを用いて電柱に取付るものとし、必要に応じアームタイにより補強し取付るものとする。
- (7) コンクリート柱、鋼材組立柱などで貫通ボルト穴のない場合には、腕金はアームバンドで取付、アームタイはアームバンドで取付るものとする。
- (8) 抱え腕金となる場合は、抱ボルトを使用し、平行となるよう締め付けるものとする。
- (9) 腕金の取付穴加工は、防食処理前に行うものとする。
- (10) がいしは、架線の状況により、ピンがいし、引留がいしなど使用箇所に適した、がいしを選定して使用するものとする。
- (11) がいし間の距離は、高圧線間 0.4m以上、低圧線間 0.3m以上とする。 なお、昇降用の空間を設ける場合は、電柱の左右側を 0.3m以上とする。
- (12) バインド線は、銅ビニルバインド線によるものとする。 なお、電線が 3.2mm 以下の場合は、太さ 1.6mm とし、ピンがいしのバインド法は両たすき 3 回一重とする。電線が 4.0mm 以上の場合は、2.0mm とし、ピンがいしのバインド法は、両たすき 3 回二重とする。

4. 支柱

- (1) コンクリート柱に支柱を取付る場合には、適合した取付金具を使用するものとする。
- (2) 支柱を設ける箇所の地盤が軟弱な場合には、沈下を防止するものとする。

3-10-8 接地

1. 接地線

接地線は、緑色のビニル電線を使用し、その太さは、次による。ただしビニルケーブルの一心を接地線として使用する場合は、原則として緑色の心線とするが、これによりがたい場合は端部に緑色の色別を施す。

(1) A 種接地工事

- ① 接地母線及び避雷器 14mm²以上
- ② その他の場合 5.5mm²以上
- (2) B 種接地工事は表 3-10-6 による。

表 3-10-6 B 種設置工事の接地線の太さ

	変圧器 1 相分の容量	接地線	の太さ	
100V 級	200V 級	400V 級	銅	アルミ
5kVA まで	10kVA まで	20kVA まで	2.6mm 以上	3.2mm 以上
10kVA まで	20kVA まで	40kVA まで	3.2mm 以上	14mm ² 以上
20kVA まで	40kVA まで	75kVA まで	14mm ² 以上	22mm ² 以上
40kVA まで	75kVA まで	150kVA まで	22mm ² 以上	38mm ² 以上
60kVA まで	125kVA まで	250kVA まで	38mm ² 以上	60mm ² 以上
75kVA まで	150kVA まで	300kVA まで	60mm ² 以上	60mm ² 以上
100kVA まで	200kVA まで	400kVA まで	60mm ² 以上	100mm ² 以上
175kVA まで	350kVA まで	700kVA まで	100mm ² 以上	125mm ² 以上

(注)「変圧器1相分の容量」とは、次の値をいう。

なお、単相3線式は200V級を適用する。

- ・3 相変圧器の場合は、定格容量の 1/3。
- ・単相変圧器と同容量のΔ結線又はY結線の場合は、単相変圧器の1台分の定格容量。
- ・単相変圧器と同容量のV結線の場合は、単相変圧器の1台分の定格容量、異容量のV結線 の場合は、大きい容量の単相変圧器の定格容量。
- ・本表により選定した接地線の太さが、(3)により変圧器の低圧側を保護する配線用しゃ 断機などに基づいて選定される太さより細い場合は、(3)により選定するものとする。
- (3) C 種接地工事及び D 種接地工事は表 3-10-7 による。

なお、表 3-10-7 に該当しない場合は、1.6mm 以上とする。

設置する機械器	接地線の太さ							
具の金属製外箱、			移動して使用す	る機械器具に接地				
配管などの低圧		一般の場合	を施す場合にお	いて可とう性を必				
電路の電源側に		一板切場合	要とする部分に	コート、又はキャフ、タイヤケー				
施設される過電				ブルを使用する場合				
流遮断器のうち				異されるのの	2心を接地線と			
最小の定格電流		銅	アルミ	単心のものの	して使用する場			
の容量				太さ	合の1心太さ			
20A 以下	1.6mm 以上	2mm ² 以上	2.6mm 以上	1.25mm ² 以上	0.75mm ² 以上			
30A 以下	1.6mm 以上	2mm ² 以上	2.6mm 以上	2mm ² 以上	1.25mm ² 以上			
50A 以下	2.0mm 以上	3.5mm ² 以上	2.6mm 以上	3.5mm ² 以上	2mm ² 以上			
100A 以下	2.6mm 以上	5.5m ² 以上	3.2mm 以上	5.5m ² 以上	3.5m ² 以上			
150A 以下	-	8mm ² 以上	14mm ² 以上	8mm ² 以上	5.5mm ² 以上			
200A 以下	1	14mm ² 以上	22mm ² 以上	14mm ² 以上	5.5mm ² 以上			
400A 以下	_	22mm ² 以上	38mm ² 以上	22mm ² 以上	14mm ² 以上			
600A 以下	_	38mm ² 以上	60mm ² 以上	38mm ² 以上	22mm ² 以上			
800A 以下	_	60mm ² 以上	80mm ² 以上	50mm ² 以上	30mm ² 以上			
1000A 以下	_	60mm ² 以上	100mm ² 以上	60mm ² 以上	30mm ² 以上			
1200A 以下	_	100mm ² 以上	125mm ² 以上	80mm ² 以上	38mm ² 以上			

[備考] 電動機の定格出力が上表を超過するときは、配線用遮断器などの定格電流に基づいて接地線の太さを選定する。

- 2. A 種接地の電気工作物
- (1) 高圧及び特別高圧の機器の鉄台及び金属製外箱。

ただし、高圧の機器で人が触れるおそれがないように木柱、コンクリート柱その他これに類するもののうえに施設を設置する場合、鉄台又は外箱の周囲に適当な絶縁台を設けた場合は、 省略することができる。

- (2) 特別高圧計器用変成器の二次側電路。
- (3) 高圧及び特別高圧計器用変成器の鉄心。 ただし、外箱のない計器用変成器がゴム、合成樹脂などの絶縁物で被覆されたものは、この 限りではない。
- (4) 高圧及び特別高圧の電路に施設する避雷器及び放出筒その他避雷器に代わる装置
- (5) 特別高圧電路と高圧電路とを結合する変圧器の高圧側に設ける放電装置。
- (6) 高圧ケーブルを収める金属管、防護装置の金属製部分、ケーブルラック、金属製接続箱及びケーブルの被覆に使用する金属体。

ただし、地中などで人が触れるおそれがないように施設する場合は、D 種設置工事とすることができる。

- 3. B 種接地工事の電気工作物
- (1) 高圧電路と低圧電路とを結合する変圧器の低圧側中性点。

ただし、低圧電路の使用電圧が 300V 以下の場合において変圧器の構造又は配電方式により 変圧器の中性点に施工できない場合は、低圧側の一端子とする。

- (2) 高圧及び特別高圧と低圧電路とを結合する変圧器であって、その高圧又は特別高圧巻線と低 圧巻線との間の金属製混触防止板。
- (3) 特別高圧電路と低圧電路とを結合する変圧器の低圧側の中性点(接地抵抗値 10 Ω以下)。ただし、低圧電路の使用電圧が 300V 以下の場合においては、前項(1)による。
- 4. C 種設置工事の電気工作物
- (1) 300V を超える低圧用の機器の鉄台及び金属製外箱
- (2) 300V を超える低圧計器用変成器の鉄心 ただし、外箱のない計器用変成器がゴム、合成樹脂その他の絶縁物で被覆されたものはこの 限りではない。
- (3)300Vを超える低圧ケーブル配線による電線路のケーブルを収める金属管、ケーブルの防護装置の金属製部分、ケーブルラック、金属製接続箱、ケーブルの金属被覆
- (4) 合成樹脂管配線による 300V を超える低圧屋内配線に使用する金属製プルボックス及び粉じん防爆形フレキシブルフィッテング
- (5) 金属管配線、可とう電線管配線、金属ダクト配線、バスダクト配線による 300V を超える低 圧屋内配線の管、ダクト
- (6) 低圧屋内配線と弱電流電線を隔壁を設けて収める場合の電線保護物の金属部分
- (7) ガス上記危険場所及び粉じん危険場所内の低圧の電気機器の外箱、鉄枠、照明器具、可搬形機器、キャビネット、金属管とその付属品の露出した金属製部分
- 5. D 種設置工事の電気工作物
- (1) 高圧地中線路に接続する金属製外箱
- (2) 使用電圧 300V 以下の機器の鉄台及び金属製外箱
- (3)使用電圧300V以下の計器用変成器の鉄心 ただし、外箱のない計器用変成器がゴム、合成樹脂その他の絶縁物で被覆したものはこの限り でない。
- (4) 低圧又は高圧架空配線にケーブルを使用し、これをちょう架する場合のちょう架用線及びケーブルの被覆に使用する金属体。ただし、低圧架空配線の場合、ちょう架用線に絶縁電線又はこれと同等以上の絶縁効力のあるものを使用する場合は、ちょう架用線の接地を省略できる。
- (5) 地中配線を収める金属製の暗渠、管及び管路、金属製の配線接続箱並びに地中配線の金属被 覆
- (6) 使用電圧 300V を超える低圧又は高圧計器用変成器の2次側電路

3-10-9 光ケーブル

- 1. 一般事項
- (1) 布設される光ケーブルが、他の電力線と接近または交差する場合の離隔距離は、電気設備技 術基準の解釈および有線電気通信設備令に準拠して行うものとする。
- (2) 光ケーブルの布設作業中は、光ケーブルが傷まないように行い、延線時許容曲げ半径は、仕上がり外径の20倍以上とする。また、固定時の曲げ半径は、仕上がり外径の10倍以上とする。
- (3) 光ケーブルを支持または固定する場合は、光ケーブルに外圧または張力が加わらないように

施工するものとする。

- (4) 外圧または衝撃を受けるおおそれのある部分は、防護処置を施すものとする。
- (5) 光ケーブルに加わる張力および側圧は、許容張力および許容側圧以下とするものとする。
- (6) 光ケーブルの布設時には、テンションメンバに延線用撚戻し金物を取り付け、一定の速度(最大10m/分程度)で布設し、張力の変動や衝撃を与えないように施工するものとする。
- (7) 布設時には、光ケーブル内に水が入らないように、防水処置を施すものとする。
- (8) 光ケーブルを電線管より引き出す部分には、プッシングなどを取り付け、引き出し部で損傷しないように、スパイラルチューブなどにより保護するものとする。
- (9) 光ケーブルの布設時は、光ケーブルを踏んだり、重量が光ケーブル上に加わらないように施工するものとする。
- (10) 光ケーブルの布設の要所では、ケーブルの合成樹脂又はファイバ製などの名札を取付、ケーブルの種類、行先などを表示するものとする。

2. 光ケーブルの地中配線

- (1) 光ケーブルの地中配線を行う前に、管内の清掃を行った後、管路径に合ったマンドリルまたはテストケーブルを用いて通過試験を行い、管路の状態を確認するものとする。
- (2) 地中配線は、ハンドホールごとに人を配置し、連絡を取りながら、ケーブルの許容張力および許容曲率を確認しながら施工するものとする。
- (3) ハンドホール内では、接続部および引き通し部ともに光ケーブルに必要長を確保することとし、災害時等のケーブル移動に際し、キンク断線が生じないように考慮するものとする。

3. 光ケーブルの屋内配線

- (1)屋内光ケーブルの布設は、光コネクタが接続されている場合があるため、光コネクタや光コードに対する保護を行うものとする。
- (2)屋内管内配線は、プルボックスごとに人を配置し、連絡を取りながら、ケーブルの許容張力 および許容曲率を確認しながら施工するものとする。
- (3) 水平ラック部に光ケーブルを布設する場合は、ラック 3m ごとに緊縛して固定するもんとする。
- (4) 垂直ラック部に光ケーブルを布設する場合は、ラック 1.5m ごとに緊縛して固定するもんとする。
- (5) 光ケーブルがフリーアクセス床・二重床に布設された後に、他の工事によって別のケーブルが積み重ねられていることが多いため、ケーブルの耐圧縮強度に注意し、ケーブルが輻輳される箇所については、保護を行うものとする。また、他の工作物と交差しないように施工するものとする。

4. 光ケーブル屋外配線

- (1) 光ケーブルの屋外布設にあたっては、1. 一般事項、2. 光ケーブル地中配線および 3. 光ケーブル屋内配線 (2) \sim (4) によるものとする。
- (2) トラフ内に布設する場合は、保護砂を充填するものとする。また、布設後に他の工事に他の 工事によって別のケーブルが積み重ねられていることが多いため、ケーブルの耐圧縮強度に注意 し、許容側圧を超えないよう施工するものとする。

5. 光ケーブル架空配線

光ケーブルを架空配線する場合は架線の高さは、電気設備基準の解釈によるほか、以下によるものとする

- (1) 光ケーブルの布設作業中は、許容張力および許容曲率を確認しながら施工するとともに、他のケーブルとの接触、柱間のケーブルのたるみおよび脱落などの監視を行うものとする。
- (2) 光ケーブルの布設作業中は、接触する危険のある変圧器、他のケーブル及び工作物などには安全対策を講じるものとする。
- (3) 光ケーブルは、接続、測定および支障移転などを考慮して、ケーブル両端および中間点等に各々必要長を確保するものとする。
- (4) ケーブルの弛度は、光ケーブルの種類、径間長および外気温度によって異なるため、実状に 応じた計算を行い施工するものとする。また、共架および添架において、既設電線との混触など の恐れがある場合には、既設電線の弛度に合わせてせこうするものとする。

6. 光ケーブル接続

(1) 光ケーブルの心線部の接続は、所定の接続材料(または接続箱)を使用し、光ケーブルを 確実に固定するものとする。なお、光ケーブルの心線接続は、以下によるものとする。

①光ケーブルの心線相互の接続は、アーク放電による融着接続または光コネクタによる接続とし、接続損失は融着接続の場合 0.6dB/箇所以下、かつ、施工区間の伝送損失が所定の規格値を満足するものとする。また、光コネクタによる接続の場合 0.7dB/両端以下とする。なお、光ケーブルの心線接続を融着接続とする場合は、JIS C 6841「光ファイバ心線融着接続方法」によるものとする。

②光ケーブルの心線接続部は、振動・張力・圧縮力・曲がりなどの機械的外力および水・湿気・ 有害ガスなどの物質から。長期にわたり保護できるように施工するものとする。

③光ケーブルの融着心線を納める屈曲直径は 6cm 以上とし、心線は突起部などに接しないように納めるものとする。

④融着接続およびコネクタの取付は、光ケーブルに適した材料および工具を用いて行うものと する。

⑤融着接続作業は、湿度の高い場所を避け、塵埃等の少ない場所で行うものとする。

(2) 光ケーブルの成端

光ケーブルの成端は、以下によるものとする。なお、光ケーブルの心線接続は前項によるものとする。

- ① 光ケーブルと機器端子を接続する場合は、成端箱を設けて箱ないで外被を固定し、前項に 記したとおり、機械的な強度を保つように施工するものとする。なお、機器の内部に接続 箱などの施設がある場合、直接引き入れて同様に成端するものとする。
- ② 光ケーブルと機器端子を接続する場合は、コネクタ付光ファイバコードを用いて接続するものとする。ただし、機器の内部に接続箱などの施設がある場合およびケーブルが集合ファイバコードの場合のように、コネクタ付光ファイバコードが不要の場合はこの限りでない。

7. 光ケーブルの測定および試験

光ケーブル布設後の測定および試験は、以下の項目について行うものとする。

(1) 光ケーブル布設後の測定および試験項目

①接続損失の測定

接続損失は、測定区間の両端から測定し、その平均値を採用する。

②伝送損失の測定

施工区間の伝送損失が、所定の規格値以下で施工されたかを測定する。

③クロージャーの気密試験

クロージャー内の防水のため、気圧を高めて密封された器内の気密が十分か、確認の試験 を行うものとする。

4)外観確認

光ケーブルの外観(損傷・変形のないこと)、布設状態(無理な捻じれ等のないこと)、整理状態(整然と配置されていること)、付属機材類が正しく取付られていること等を確認する。

(2) 測定および試験データの確認、整理

測定および試験完了後、施工区間の各種データが規格値内であることを確認して、必要な整理を行うものとする。

3-10-10 水位測定装置

1. 一般事項

水位測定装置については、測定範囲をカバーし、必要な精度が得られ、耐久性に富んだものとする。また、測定箇所および測定範囲については、設計図書によるものとする。

2. 避雷器

屋外に設置する水位測定装置には、設計図書に明示した場合を除き、避雷器を設け、機器の 保護を行えるものとする。

3. 防波管・保護管

防波管・保護管は、水質、波浪、設置条件等を考慮して波浪、ごみ、生物、泥等により影響の生じない構造とする。また、選定にあたっては、耐候性、耐久性があり、耐衝撃に強いものとしなければならない。

4. フロート

フロートを設ける場合は、合成樹脂またはステンレス鋼製とする。

5. 表示・変換方法

表示方式および計測信号の変換方法等について、設計図書によるものとする。

3-10-11 流量計

1. 一般事項

流量計の形式選択は、設計図書によるものとする。また、水質、測定範囲、測定、精度、設置場所等を考慮する。

2. 電磁流量計

電磁流量計には、設計図書に規定した場合を除き、次によるものとする。

- (1)制度は、設計図書によるものとする。
- (2) 取付方法は、フランジ取付とし、片側を遊動フランジ付短管とする。
- (3) 管内面は、テフロンまたはポリウレタン等でライニング加工を行うものとする。
- (4)検出部の上下流に必要な直管長はJIS B 7554によるものとし、設置条件を考慮し決定す

るものとする。

3. 超音波流量計

超音波流量計には、設計図書に規定した場合を除き、次によるものとする。

- (1)制度は、設計図書によるものとする。
- (2) 検出部は、取外し可能なものとし、検出部と変換器間の配線は、同軸ケーブル等を使用するものとする。
- (3) 検出部の上下流に必要な直管長は J EM I S 032 によるものとし、設置条件を考慮し決定するものとする。

第11 節 仮設工

3-11-1 一般事項

1. 一般事項

受注者は、仮設工については、設計図書の定めまたは監督員の指示がある場合を除き、受注者 の責任において施工しなければならない。

2. 仮設物の撤去 原形復旧

受注者は、仮設物については、設計図書の定めまたは監督員の指示がある場合を除き、工事完 了後、仮設物を完全に撤去し、原形に復旧しなければならない。

3-11-2 足場工

受注者は、足場工の施工にあたり、「手すり先行工法等に関するガイドライン(厚生労働省平成 21 年4月)」によるものとし、足場の組立、解体、変更の作業時及び使用時には、常時、すべて の作業床において二段手すり及び幅木の機能を有するものを設置しなければならない。

第 12 節 付帯土木工事

3-12-1 二次コンクリート

1. 一般事項

受注者は、箱抜き等に充填する補助的コンクリート(以下「二次コンクリートという。」は、レディーミクストコンクリート JIS A 5308 (レディーミクストコンクリート) を使用するものとする。

ただし、配管貫通孔充填用等の少量コンクリートについてはこの限りではない。

2. 二次コンクリートの強度

受注者は、二次コンクリートの強度については特別仕様書に明示した場合を除き本体と同じ強 度以上のコンクリートを打設しなければならない。

ただし、日打設量が 10m3 未満の場合は配合試験を要しないものとする。

3. コンクリートの打継

受注者は、硬化したコンクリートに、新コンクリートを打継ぐ場合には、その打込み前に、型枠を締め直し、硬化したコンクリートの表面のレイタンス、緩んだ骨材粒、品質の悪いコンクリート、雑物などを取除き吸水させなければならない。

また、受注者は、構造物の品質を確保する必要がある場合には、旧コンクリートの打継面を、

ワイヤブラシで表面を削るか、チッピング等により粗にして十分吸水させ、セメントペースト、 モルタルあるいは湿潤面用エポキシ樹脂などを塗った後、新コンクリートを打継がなければなら ない。

4. 二次コンクリート打設

受注者は、二次コンクリート打設にあたっては材料の分離が生じないように適切な方法により行い、1作業区間内の二次コンクリートについては、これを完了するまで連続して打設しなければならない。また、天候、設備能力等を検討して、構造物の強度、耐久性及び外観を損なわないような、打設順序、締固め方法で行わなければならない。

3-12-2 その他

その他土木工事については、土木工事共通仕様書による。